

Product datasheet for TR501934

Polr2a Mouse shRNA Plasmid (Locus ID 20020)

Product data:

Product Type: shRNA Plasmids

Product Name: Polr2a Mouse shRNA Plasmid (Locus ID 20020)

Locus ID: 20020

Synonyms: 220kDa; Rpb1; Rpo2-1

Vector: pRS (TR20003)

E. coli Selection: Ampicillin

Mammalian Cell Selection:

Puromycin

Format:

Retroviral plasmids

Components: Polr2a - Mouse, 4 unique 29mer shRNA constructs in retroviral untagged vector(Gene ID =

20020). 5µg purified plasmid DNA per construct

29-mer scrambled shRNA cassette in pRS Vector, TR30012, included for free.

RefSeq: NM 001291068, NM 009089, NM 009089.1, NM 009089.2, NM 001291068.1, BC114996

UniProt ID: <u>P08775</u>

OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200

CN: techsupport@origene.cn

Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com

Summary:

DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cleft, the clamp element that moves to open and close the cleft and the jaws that are thought to grab the incoming DNA template. At the start of transcription, a singlestranded DNA template strand of the promoter is positioned within the central active site cleft of Pol II. A bridging helix emanates from RPB1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol II by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition. During transcription elongation, Pol II moves on the template as the transcript elongates (By similarity). Elongation is influenced by the phosphorylation status of the C-terminal domain (CTD) of Pol II largest subunit (RPB1), which serves as a platform for assembly of factors that regulate transcription initiation, elongation, termination and mRNA processing (By similarity). Regulation of gene expression levels depends on the balance between methylation and acetylation levels of tha CTD-lysines (PubMed:26687004). Initiation or early elongation steps of transcription of growth-factors-induced immediate early genes are regulated by the acetylation status of the CTD (PubMed:24207025). Methylation and dimethylation have a repressive effect on target genes expression (PubMed:26687004). [UniProtKB/Swiss-Prot Function]

shRNA Design:

Performance Guaranteed: These shRNA constructs were designed against multiple splice variants at this gene locus. To be certain that your variant of interest is targeted, please contact <u>techsupport@origene.com</u>. If you need a special design or shRNA sequence, please utilize our <u>custom shRNA service</u>.

OriGene guarantees that the sequences in the shRNA expression cassettes are verified to correspond to the target gene with 100% identity. One of the four constructs at minimum are guaranteed to produce 70% or more gene expression knock-down provided a minimum transfection efficiency of 80% is achieved. Western Blot data is recommended over qPCR to evaluate the silencing effect of the shRNA constructs 72 hrs post transfection. To properly assess knockdown, the gene expression level from the included scramble control vector must be used in comparison with the target-specific shRNA transfected samples.

For non-conforming shRNA, requests for replacement product must be made within ninety (90) days from the date of delivery of the shRNA kit. To arrange for a free replacement with newly designed constructs, please contact Technical Services at techsupport@origene.com. Please provide your data indicating the transfection efficiency and measurement of gene expression knockdown compared to the scrambled shRNA control (Western Blot data preferred).