

Product datasheet for TP761123

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

ATP5MD (NM_032747) Human Recombinant Protein

Product data:

Product Type: Recombinant Proteins

Description: Purified recombinant protein of Human up-regulated during skeletal muscle growth 5

homolog (mouse) (USMG5), transcript variant 2, full length, with N-terminal HIS tag, expressed

in E. coli, 50ug

Species: Human
Expression Host: E. coli

Expression cDNA Clone

or AA Sequence:

A DNA sequence encoding human full-length USMG5

Tag: N-His Predicted MW: 6.3 kDa

Concentration: >0.05 μg/μL as determined by microplate BCA method

Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining

Buffer: 25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% sarkosyl, 10% glycerol

Note: For testing in cell culture applications, please filter before use. Note that you may experience

some loss of protein during the filtration process.

Storage: Store at -80°C.

Stability: Stable for 12 months from the date of receipt of the product under proper storage and

handling conditions. Avoid repeated freeze-thaw cycles.

RefSeq: NP 116136

 Locus ID:
 84833

 UniProt ID:
 Q96IX5

 RefSeq Size:
 609

Cytogenetics: 10q24.33

RefSeq ORF: 174

Synonyms: bA792D24.4; DAPIT; HCVFTP2; MC5DN6; USMG5

Summary:

Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). Minor subunit required to maintain the ATP synthase population in the mitochondria (PubMed:21345788). [UniProtKB/Swiss-Prot Function]

Protein Families:

Transmembrane

Product images:

