

Product datasheet for TP760518

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

GTP cyclohydrolase 1 (GCH1) (NM 001024024) Human Recombinant Protein

Product data:

Product Type: Recombinant Proteins

Description: Purified recombinant protein of Human GTP cyclohydrolase 1 (GCH1), transcript variant 2, full

length, with N-terminal HIS tag, expressed in E.Coli, 50ug

Species: Human
Expression Host: E. coli

Expression cDNA Clone

or AA Sequence:

A DNA sequence encoding human full-length GCH1

Tag: N-His

Predicted MW: 27.7 kDa

Concentration: >0.05 μg/μL as determined by microplate BCA method

Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining

Buffer: 25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% sarkosyl, 10% glycerol

Note: For testing in cell culture applications, please filter before use. Note that you may experience

some loss of protein during the filtration process.

Storage: Store at -80°C.

Stability: Stable for 12 months from the date of receipt of the product under proper storage and

handling conditions. Avoid repeated freeze-thaw cycles.

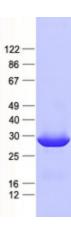
RefSeg: NP 001019195

Locus ID: 2643

UniProt ID: <u>P30793</u>, <u>Q8IZH9</u>, <u>A0A024R642</u>

RefSeq Size: 1995 Cytogenetics: 14q22.2 RefSeq ORF: 750

Synonyms: DYT5; DYT5a; DYT14; GCH; GTP-CH-1; GTPCH1; HPABH4B


Summary:

This gene encodes a member of the GTP cyclohydrolase family. The encoded protein is the first and rate-limiting enzyme in tetrahydrobiopterin (BH4) biosynthesis, catalyzing the conversion of GTP into 7,8-dihydroneopterin triphosphate. BH4 is an essential cofactor required by aromatic amino acid hydroxylases as well as nitric oxide synthases. Mutations in this gene are associated with malignant hyperphenylalaninemia and dopa-responsive dystonia. Several alternatively spliced transcript variants encoding different isoforms have been described; however, not all variants give rise to a functional enzyme. [provided by RefSeq, Jul 2008]

Protein Families: Druggable Genome

Protein Pathways: Folate biosynthesis, Metabolic pathways

Product images:

