

Product datasheet for TP760168

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

FBXO22 (NM_147188) Human Recombinant Protein

Product data:

Product Type: Recombinant Proteins

Description: Recombinant protein of human F-box protein 22 (FBXO22), transcript variant 1, full length,

with N-terminal HIS tag, expressed in E.Coli, 50ug

Species: Human
Expression Host: E. coli

Expression cDNA Clone

or AA Sequence:

A DNA sequence encoding human full-length FBXO22

Tag: N-His Predicted MW: 44.5

Concentration: >0.05 μg/μL as determined by microplate BCA method

Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining

Buffer: 25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% sarkosyl, 10% glycerol

Note: For testing in cell culture applications, please filter before use. Note that you may experience

some loss of protein during the filtration process.

Storage: Store at -80°C.

Stability: Stable for 12 months from the date of receipt of the product under proper storage and

handling conditions. Avoid repeated freeze-thaw cycles.

RefSeq: NP 671717

 Locus ID:
 26263

 UniProt ID:
 Q8NEZ5

 RefSeq Size:
 3497

 Cytogenetics:
 15q24.2

RefSeq ORF: 1209

Synonyms: FBX22; FISTC1

Summary:

This gene encodes a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of the ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which function in phosphorylation-dependent ubiquitination. The F-box proteins are divided into 3 classes: Fbws containing WD-40 domains, Fbls containing leucine-rich repeats, and Fbxs containing either different protein-protein interaction modules or no recognizable motifs. The protein encoded by this gene belongs to the Fbxs class and, as a transcriptional target of the tumor protein p53, is thought to be involved in degradation of specific proteins in response to p53 induction. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2010]

Protein Families: Druggable Genome

Product images:

