Product datasheet for TP760168 #### OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn ### FBXO22 (NM_147188) Human Recombinant Protein #### **Product data:** **Product Type:** Recombinant Proteins **Description:** Recombinant protein of human F-box protein 22 (FBXO22), transcript variant 1, full length, with N-terminal HIS tag, expressed in E.Coli, 50ug Species: Human Expression Host: E. coli Expression cDNA Clone or AA Sequence: A DNA sequence encoding human full-length FBXO22 Tag: N-His Predicted MW: 44.5 **Concentration:** >0.05 μg/μL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% sarkosyl, 10% glycerol **Note:** For testing in cell culture applications, please filter before use. Note that you may experience some loss of protein during the filtration process. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP 671717 Locus ID: 26263 UniProt ID: Q8NEZ5 RefSeq Size: 3497 Cytogenetics: 15q24.2 RefSeq ORF: 1209 Synonyms: FBX22; FISTC1 **Summary:** This gene encodes a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of the ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which function in phosphorylation-dependent ubiquitination. The F-box proteins are divided into 3 classes: Fbws containing WD-40 domains, Fbls containing leucine-rich repeats, and Fbxs containing either different protein-protein interaction modules or no recognizable motifs. The protein encoded by this gene belongs to the Fbxs class and, as a transcriptional target of the tumor protein p53, is thought to be involved in degradation of specific proteins in response to p53 induction. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2010] **Protein Families:** Druggable Genome ## **Product images:**