

Product datasheet for TP720248XL

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

MDH1 (NM 001199111) Human Recombinant Protein

Product data:

Product Type: Recombinant Proteins

Description: Recombinant protein of human malate dehydrogenase 1, NAD (soluble) (MDH1), transcript

variant 1.

Species: Human
Expression Host: E. coli

Expression cDNA Clone

or AA Sequence:

Ser2-Ala334

Tag: C-His

Predicted MW: 37.5 kDa **Concentration:** lot specific

Purity: >95% as determined by SDS-PAGE and Coomassie blue staining

Buffer: Provided lyophilized from a 0.2 μm filtered solution of 20 mM Tris-HCl, 150 mM NaCl

Endotoxin: < 0.1 EU per µg protein as determined by LAL test

Storage: Store at -80°C.

Stability: Stable for at least 3 months from date of receipt under proper storage and handling

conditions.

RefSeq: NP 001186040

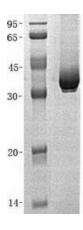
 Locus ID:
 4190

 UniProt ID:
 P40925

 Cytogenetics:
 2p15

Synonyms: DEE88; EIEE88; HEL-S-32; KAR; MDH-s; MDHA; MGC:1375; MOR2

Summary:


This gene encodes an enzyme that catalyzes the NAD/NADH-dependent, reversible oxidation of malate to oxaloacetate in many metabolic pathways, including the citric acid cycle. Two main isozymes are known to exist in eukaryotic cells: one is found in the mitochondrial matrix and the other in the cytoplasm. This gene encodes the cytosolic isozyme, which plays a key role in the malate-aspartate shuttle that allows malate to pass through the mitochondrial membrane to be transformed into oxaloacetate for further cellular processes. Alternatively spliced transcript variants have been found for this gene. A recent study showed that a C-terminally extended isoform is produced by use of an alternative in-frame translation termination codon via a stop codon readthrough mechanism, and that this isoform is localized in the peroxisomes. Pseudogenes have been identified on chromosomes X and 6. [provided by RefSeq, Feb 2016]

Protein Families: Druggable Genome

Protein Pathways: Citrate cycle (TCA cycle), Glyoxylate and dicarboxylate metabolism, Metabolic pathways,

Pyruvate metabolism

Product images:

