

Product datasheet for TP505214

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

Cdk2 (NM_183417) Mouse Recombinant Protein

Product data:

Product Type: Recombinant Proteins

Description: Purified recombinant protein of Mouse cyclin-dependent kinase 2 (Cdk2), with C-terminal

MYC/DDK tag, expressed in HEK293T cells, 20ug

Species: Mouse Expression Host: HEK293T

Expression cDNA Clone >MR205214 protein sequence

or AA Sequence: Red=Cloning site Green=Tags(s)

MENFQKVEKIGEGTYGVVYKAKNKLTGEVVALKKIRLDTETEGVPSTAIREISLLKELNHPNIVKLLDVI HTENKLYLVFEFLHQDLKKFMDASALTGIPLPLIKSYLFQLLQGLAFCHSHRVLHRDLKPQNLLINAEGS IKLADFGLARAFGVPVRTYTHEVVTLWYRAPEILLGCKYYSTAVDIWSLGCIFAEMHLVCTQHHAKCCGE HRRNGRHSLCPLCSYLEVAASQGGGMTAVSAPHPVTRRALFPGDSEIDQLFRIFRTLGTPDEVVWPGVTS MPDYKPSFPKWARQDFSKVVPPLDEDGRSLLSQMLHYDPNKRISAKAALAHPFFQDVTKPVPHLRL

TRTRPLEQKLISEEDLAANDILDYKDDDDKV

Tag: C-MYC/DDK

Predicted MW: 39 kDa

Concentration: >0.05 µg/µL as determined by microplate BCA method

Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining

Buffer: 25 mM Tris-HCl, 100 mM glycine, pH 7.3, 10% glycerol

Note: For testing in cell culture applications, please filter before use. Note that you may experience

some loss of protein during the filtration process.

Storage: Store at -80°C after receiving vials.

Stability: Stable for 12 months from the date of receipt of the product under proper storage and

handling conditions. Avoid repeated freeze-thaw cycles.

RefSeq: NP 904326

Locus ID: 12566

UniProt ID: <u>P97377</u>, Q3UGB9, Q3U6X7

Cdk2 (NM_183417) Mouse Recombinant Protein - TP505214

RefSeq Size: 2432 Cytogenetics: 10 D3 RefSeq ORF: 1041

Synonyms: A630093N05Rik

Summary:

Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis, but dispensable for mitosis. Phosphorylates CTNNB1, USP37, p53/TP53, NPM1, CDK7, RB1, BRCA2, MYC, NPAT, EZH2. Triggers duplication of centrosomes and DNA. Acts at the G1-S transition to promote the E2F transcriptional program and the initiation of DNA synthesis, and modulates G2 progression; controls the timing of entry into mitosis/meiosis by controlling the subsequent activation of cyclin B/CDK1 by phosphorylation, and coordinates the activation of cyclin B/CDK1 at the centrosome and in the nucleus. Crucial role in orchestrating a fine balance between cellular proliferation, cell death, and DNA repair in human embryonic stem cells (hESCs). Activity of CDK2 is maximal during S phase and G2; activated by interaction with cyclin E during the early stages of DNA synthesis to permit G1-S transition, and subsequently activated by cyclin A2 (cyclin A1 in germ cells) during the late stages of DNA replication to drive the transition from S phase to mitosis, the G2 phase. EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing. Phosphorylates CABLES1 (By similarity). Cyclin E/CDK2 prevents oxidative stress-mediated Ras-induced senescence by phosphorylating MYC. Involved in G1-S phase DNA damage checkpoint that prevents cells with damaged DNA from initiating mitosis; regulates homologous recombination-dependent repair by phosphorylating BRCA2, this phosphorylation is low in S phase when recombination is active, but increases as cells progress towards mitosis. In response to DNA damage, doublestrand break repair by homologous recombination a reduction of CDK2-mediated BRCA2 phosphorylation. Phosphorylation of RB1 disturbs its interaction with E2F1. NPM1 phosphorylation by cyclin E/CDK2 promotes its dissociates from unduplicated centrosomes, thus initiating centrosome duplication. Cyclin E/CDK2-mediated phosphorylation of NPAT at G1-S transition and until prophase stimulates the NPAT-mediated activation of histone gene transcription during S phase. Required for vitamin D-mediated growth inhibition by being itself inactivated. Involved in the nitric oxide- (NO) mediated signaling in a nitrosylation/activation-dependent manner. USP37 is activated by phosphorylation and thus triggers G1-S transition. CTNNB1 phosphorylation regulates insulin internalization. Phosphorylates FOXP3 and negatively regulates its transcriptional activity and protein stability (PubMed:23853094). Phosphorylates CDK2AP2 (By similarity).[UniProtKB/Swiss-Prot Function]