

Product datasheet for TP322889M

CRYGD (NM_006891) Human Recombinant Protein

Product data:

Product Type: Recombinant Proteins Recombinant protein of human crystallin, gamma D (CRYGD), 100 µg **Description:** Species: Human HEK293T **Expression Host: Expression cDNA Clone** >RC222889 protein sequence or AA Sequence: Red=Cloning site Green=Tags(s) MGKITLYEDRGFQGRHYECSSDHPNLQPYLSRCNSARVDSGCWMLYEQPNYSGLQYFLRRGDYADHQQ WM GLSDSVRSCRLIPHSGSHRIRLYEREDYRGQMIEFTEDCSCLQDRFRFNEIHSLNVLEGSWVLYELSNYR GRQYLLMPGDYRRYQDWGATNARVGSLRRVIDFS **TRTRPLEQKLISEEDLAANDILDYKDDDDKV** Tag: C-Myc/DDK Predicted MW: 20.6 kDa **Concentration:** >0.05 µg/µL as determined by microplate BCA method > 80% as determined by SDS-PAGE and Coomassie blue staining **Purity: Buffer:** 25 mM Tris-HCl, 100 mM glycine, pH 7.3, 10% glycerol Recombinant protein was captured through anti-DDK affinity column followed by **Preparation:** conventional chromatography steps. Note: For testing in cell culture applications, please filter before use. Note that you may experience some loss of protein during the filtration process. Store at -80°C. Storage: Stable for 12 months from the date of receipt of the product under proper storage and Stability: handling conditions. Avoid repeated freeze-thaw cycles. **RefSeq:** NP 008822 Locus ID: 1421 **UniProt ID:** P07320

View online »

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2025 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

	CRYGD (NM_006891) Human Recombinant Protein – TP322889M
RefSeq Size:	724
Cytogenetics:	2q33.3
RefSeq ORF:	522
Synonyms:	CACA; CCA3; CCP; cry-g-D; CRYG4; CTRCT4; PCC
Summary:	Crystallins are separated into two classes: taxon-specific, or enzyme, and ubiquitous. The latter class constitutes the major proteins of vertebrate eye lens and maintains the transparency and refractive index of the lens. Since lens central fiber cells lose their nuclei during development, these crystallins are made and then retained throughout life, making them extremely stable proteins. Mammalian lens crystallins are divided into alpha, beta, and gamma families; beta and gamma crystallins are also considered as a superfamily. Alpha and beta families are further divided into acidic and basic groups. Seven protein regions exist in crystallins: four homologous motifs, a connecting peptide, and N- and C-terminal extensions. Gamma-crystallins are a homogeneous group of highly symmetrical, monomeric proteins typically lacking connecting peptides and terminal extensions. They are differentially regulated after early development. Four gamma-crystallin genes (gamma-A through gamma- D) and three pseudogenes (gamma-E, gamma-F, gamma-G) are tandemly organized in a genomic segment as a gene cluster. Whether due to aging or mutations in specific genes, gamma-crystallins have been involved in cataract formation. [provided by RefSeq, Jul 2008]
Protein Families	: Druggable Genome

Product images:

Coomassie blue staining of purified CRYGD protein (Cat# [TP322889]). The protein was produced from HEK293T cells transfected with CRYGD cDNA clone (Cat# [RC222889]) using MegaTran 2.0 (Cat# [TT210002]).

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2025 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US