

Product datasheet for TP316611

CRYBB3 (NM_004076) Human Recombinant Protein

Product data:

Product Type: Recombinant Proteins Recombinant protein of human crystallin, beta B3 (CRYBB3), 20 µg **Description:** Species: Human HEK293T **Expression Host: Expression cDNA** >RC216611 protein sequence Clone or AA Red=Cloning site Green=Tags(s) Sequence: MAEQHGAPEQAAAGKSHGDLGGSYKVILYELENFQGKRCELSAECPSLTDSLLEKVGSIQVESGPWLAFE SRAFRGEQFVLEKGDYPRWDAWSNSRDSDSLLSLQPLNIDSPDHKLHLFENPAFSGRKMEIVDDDVPSLW AHGFQDRVASVRAINGTWVGYEFPGYRGRQYVFERGEYRHWNEWDASQPQLQSVRRIRDQKWHKRGRFPS S **TRTRPLEQKLISEEDLAANDILDYKDDDDKV** Tag: C-Myc/DDK Predicted MW: 24.1 kDa Concentration: >0.05 µg/µL as determined by microplate BCA method > 80% as determined by SDS-PAGE and Coomassie blue staining **Purity: Buffer:** 25 mM Tris-HCl, 100 mM glycine, pH 7.3, 10% glycerol Recombinant protein was captured through anti-DDK affinity column followed by conventional **Preparation:** chromatography steps. Note: For testing in cell culture applications, please filter before use. Note that you may experience some loss of protein during the filtration process. Store at -80°C. Storage: Stable for 12 months from the date of receipt of the product under proper storage and handling Stability: conditions. Avoid repeated freeze-thaw cycles. **RefSeq:** NP 004067 Locus ID: 1417 **UniProt ID:** P26998

View online »

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2023 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

	CRYBB3 (NM_004076) Human Recombinant Protein – TP316611	
RefSeq Size:	896	
Cytogenetics:	22q11.23	
RefSeq ORF:	633	
Synonyms:	CATCN2; CRYB3; CTRCT22	
Summary:	Crystallins are separated into two classes: taxon-specific, or enzyme, and ubiquitous. The latter class constitutes the major proteins of vertebrate eye lens and maintains the transparency and refractive index of the lens. Since lens central fiber cells lose their nuclei during development, these crystallins are made and then retained throughout life, making them extremely stable proteins. Mammalian lens crystallins are divided into alpha, beta, and gamma families; beta and gamma crystallins are also considered as a superfamily. Alpha and beta families are further divided into acidic and basic groups. Seven protein regions exist in crystallins; four homologous motifs, a connecting peptide, and N- and C-terminal extensions. Beta-crystallins, the most heterogeneous, differ by the presence of the C-terminal extension (present in the basic group, none in the acidic group). Beta-crystallins form aggregates of different sizes and are able to self-associate to form dimers or to form heterodimers with other beta-crystallins. This gene, a beta basic group member, is part of a gene cluster with beta-A4, beta-B1, and beta-B2. Mutations in this gene result in cataract congenital nuclear autosomal recessive type 2. [provided by RefSeq, Feb 2013]	

Product images:

116 —	-
66 —	-
45 —	-
35 —	-
25 —	-
18 —	-
14 -	-

Coomassie blue staining of purified CRYBB3 protein (Cat# TP316611). The protein was produced from HEK293T cells transfected with CRYBB3 cDNA clone (Cat# [RC216611]) using MegaTran 2.0 (Cat# [TT210002]).

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2023 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US