

Product datasheet for TA389169

NOS3 Mouse Antibody [Clone ID: M221]

Product data:

Product Type: Primary Antibodies

Clone Name: M221

Applications: ICC, IHC, WB **Recommended Dilution: WB**: 1:1000

ICC: 1:50

Reactivity: Human, Rat, Mouse

Host: Mouse Isotype: IgG1

Immunogen: Clone (M221) was generated from a recombinant mouse eNOS protein that included amino

acids residues in the C-terminal region. This sequence is conserved in human and rat eNOS,

and has low homology to other NOS family members.

Specificity: The antibody detects a 140 kDa* protein corresponding to eNOS on SDS-PAGE immunoblots

of human umbilical vein endothelial cells.

Formulation: PBS + 1 mg/ml BSA, 0.05% NaN3 and 50% glycerol

Concentration: lot specific

Purification: Protein A Purified

Conjugation: Unconjugated

Storage: Storage at -20°C is recommended, as aliquots may be taken without freeze/thawing due to

presence of 50% glycerol. Stable for at least 1 year at -20°C.

Stability: After date of receipt, stable for at least 1 year at -20°C.

Predicted Protein Size: 140

Database Link: P29474

OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200

CN: techsupport@origene.cn

Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com

Background:

Nitric oxide (NO) has a broad range of biological activities and is implicated in signaling pathways in phylogenetically diverse species. Nitric oxide synthases (NOS), the enzymes responsible for synthesis of NO, are homodimers whose monomers are themselves two fused enzymes: a cytochrome reductase and a cytochrome that requires three cosubstrates (L-arginine, NADPH, and oxygen) and five cofactors or prosthetic groups (FAD, FMN, calmodulin, tetrahydrobiopterin, and heme). Several distinct NOS isoforms are produced from three distinct genes. The inducible form of NOS, iNOS (NOS-II), is Ca2+ independent and is expressed in a broad range of cell types, and two constitutive Ca2+/CaM-dependent forms of NOS: nNOS (bNOS, NOS-I) identified in neurons and eNOS (ecNOS, NOS-III) identified in endothelial cells. Regulation of eNOS activity occurs through phosphorylation at multiple sites. Phosphorylation of Ser-633 (mouse Ser-632) in the FMN binding domain increases eNOS activity and may be important for the maintenance of NO synthesis after initial activation by Ca2+ flux and Ser-1177 phosphorylation.

Note:

Protein G purified tissue culture supernatant.