

## **Product datasheet for TA389156**

## **ITGB4** Mouse Antibody [Clone ID: M126]

**Product data:** 

**Product Type:** Primary Antibodies

Clone Name: M126

**Applications:** ICC, WB

Recommended Dilution: WB: 1:1000

**ICC**: 1:250

Reactivity: Human

**Host:** Mouse

**Isotype:** lgG1

**Immunogen:** Clone M126 was generated from a recombinant protein containing amino acid residues in

the cytoplasmic region of human Integrin  $\beta$ 4. This sequence is found in all three Integrin  $\beta$ 4

isoforms and has 90% homology with rat and mouse Integrin  $\beta4$ .

Specificity: This antibody detects a 200kDa\* protein corresponding to the molecular mass of Integrin β4

on SDS-PAGE immunoblots of human A431 cells.

Formulation: PBS + 1 mg/ml BSA, 0.05% NaN3 and 50% glycerol

**Concentration:** lot specific

**Purification:** Protein A Purified

**Conjugation:** Unconjugated

Storage: Storage at -20°C is recommended, as aliquots may be taken without freeze/thawing due to

presence of 50% glycerol. Stable for at least 1 year at -20°C.

**Stability:** After date of receipt, stable for at least 1 year at -20°C.

Predicted Protein Size: 200

Database Link: P16144



**OriGene Technologies, Inc.** 9620 Medical Center Drive, Ste 200

CN: techsupport@origene.cn

Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com



Background:

The NF- $\kappa$ B/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IkB proteins. Activation of IkB $\alpha$  occurs through both serine and tyrosine phosphorylation events. Activation through phosphorylation at Ser-32 and Ser-36 is followed by proteasome-mediated degradation, resulting in the release and nuclear translocation of active NF- $\kappa$ B. This pathway of IkB $\alpha$  regulation occurs in response to various NF- $\kappa$ B-activating agents, such as TNF $\alpha$ , interleukins, LPS, and irradiation. An alternative pathway for IkB $\alpha$  regulation occurs through tyrosine phosphorylation of Tyr-42 and Tyr-305. Tyr-42 is phosphorylated in response to oxidative stress and growth factors. This phosphorylation can lead to degradation of IkB $\alpha$  and NF- $\kappa$ B-activation. In contrast, Tyr-305 phosphorylation by c-AbI has been implicated in IkB $\alpha$  nuclear translocation and inhibition of NF- $\kappa$ B-activation. Thus, tyrosine phosphorylation of IkB $\alpha$  may be an important regulatory mechanism in NF- $\kappa$ B signaling.

Note:

Protein G purified tissue culture supernatant.