

Product datasheet for TA389145

OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200

Rockville, MD 20850, US
Phone: +1-888-267-4436
https://www.origene.com
techsupport@origene.com
EU: info-de@origene.com
CN: techsupport@origene.cn

Phospho-GSK3A (pTyr216) Mouse Antibody [Clone ID: M132]

Product data:

Product Type: Primary Antibodies

Clone Name: M132 Applications: WB

Recommended Dilution: WB: 1:1000

Reactivity: Human, Rat, Mouse

Host: Mouse Isotype: IgG1

Immunogen: Clone M132 was generated from a phospho-GSK-3β (Tyr-216) synthetic peptide (coupled to

KLH) corresponding to amino acid residues around tyrosine 216 of human GSK-3 β . This peptide sequence is also found in GSK-3 α (Tyr-279) and is highly conserved in GSK-3 genes in

rat and mouse.

Specificity: The antibody detects 46/50 kDa* proteins corresponding to the apparent molecular mass of

GSK-3β and GSK-3α on SDS-PAGE immunoblots of pervanadate treated rabbit fibroblasts, as

well as treated human SKN-SH and A431 cells.

Formulation: PBS + 1 mg/ml BSA, 0.05% NaN3 and 50% glycerol

Concentration: lot specific

Purification: Protein A Purified
Conjugation: Unconjugated

Storage: Storage at -20°C is recommended, as aliquots may be taken without freeze/thawing due to

presence of 50% glycerol. Stable for at least 1 year at -20°C.

Stability: After date of receipt, stable for at least 1 year at -20°C.

Predicted Protein Size: 46/50

Database Link: P49840

Phospho-GSK3A (pTyr216) Mouse Antibody [Clone ID: M132] - TA389145

Background:

Glycogen synthase kinase-3 (GSK-3) has been implicated in fundamental cell processes such as cell fate determination, metabolism, transcriptional control, and oncogenesis. Two GSK-3 genes (α and β) have been cloned in mammals and these kinase homologues show strong sequence conservation within their catalytic domain. GSK-3 β plays a critical role in cell survival by phosphorylating nuclear factor- κ B (NF- κ B) p65 subunit, leading to NF- κ B transactivation in hepatocytes. Phosphorylation regulates the activity of both GSK-3 genes. MEK1/2 can phosphorylate tyrosine 216 (tyrosine 279 in GSK-3 α), which stimulates GSK-3 kinase activity. Tyr-216 phosphorylation is required for GSK-mediated down-regulation of β -catenin activity. Also, TRAIL stimulation can increase Tyr-216 phosphorylation, and GSK-3 β activity may suppress TRAIL-induced apoptosis. Inactiviation of GSK-3 occurs through Akt phosphorylation of serine 9 of GSK-3 β (Serine 21 in GSK-3 α). This phosphorylation may be involved in later phases of neuronal apoptosis.

Note:

Protein G purified tissue culture supernatant.