

Product datasheet for TA327013S

AMPK alpha 1 (PRKAA1) Rabbit Polyclonal Antibody

Product data:

Product Type: Primary Antibodies Applications: WB Recommended Dilution: WB 1:500 - 1:2000 **Reactivity:** Human, Mouse, Rat Host: Rabbit Isotype: lgG Polyclonal **Clonality:** Immunogen: Recombinant protein of human PRKAA1 Formulation: Store at -20C or -80C. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide, 50% glycerol, pH7.3 Concentration: lot specific **Purification:** Affinity purification **Conjugation:** Unconjugated Store at -20°C as received. Storage: Stability: Stable for 12 months from date of receipt. protein kinase AMP-activated catalytic subunit alpha 1 Gene Name: Database Link: NP 006242 Entrez Gene 65248 RatEntrez Gene 105787 MouseEntrez Gene 5562 Human <u>Q13131</u>

View online »

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2025 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

	AMPK alpha 1 (PRKAA1) Rabbit Polyclonal Antibody – TA327013S
Background:	AMP-activated protein kinase (AMPK) is highly conserved from yeast to plants and animals and plays a key role in the regulation of energy homeostasis. AMPK is a heterotrimeric complex composed of a catalytic a subunit and regulatory β and ? subunits, each of which is encoded by two or three distinct genes (a1, 2; β 1, 2; 71, 2, 3). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia. The tumor suppressor LKB1, in association with accessory proteins STRAD and MO25, phosphorylates AMPKa at Thr172 in the activation loop, and this phosphorylation is required for AMPK activation. AMPKa is also phosphorylated at Thr258 and Ser485 (for a1; Ser491 for a2). The upstream kinase and the biological significance of these phosphorylation events have yet to be elucidated. The β 1 subunit is post-translationally modified by myristoylation and multi-site phosphorylation including Ser24/25, Ser96, Ser101, Ser108, and Ser182. Phosphorylation at Ser108 of the β 1 subunit seems to be required for the activation of AMPK enzyme, while phosphorylation at Ser24/25 and Ser182 affects AMPK localization. Several mutations in AMPK? subunits have been identified, most of which are located in the putative AMP/ATP binding sites (CBS or Bateman domains). Mutations at these sites lead to reduction of AMPK activity and cause glycogen accumulation in heart or skeletal muscle. Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS.
Synonyms:	AMPK; AMPKa1
Protein Families:	Druggable Genome, Protein Kinase
Protein Pathway	s: Adipocytokine signaling pathway, Hypertrophic cardiomyopathy (HCM), Insulin signaling pathway, pathway, mTOR signaling pathway, Regulation of autophagy

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2025 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US