

Product datasheet for SC210003

BPGM (NM 001724) Human 3' UTR Clone

Product data:

Product Type: 3' UTR Clones

Product Name: BPGM (NM_001724) Human 3' UTR Clone

Vector: pMirTarget (PS100062)

Symbol: BPGM

Synonyms: DPGM; ECYT8
ACCN: NM 001724

Insert Size: 815 bp

Insert Sequence: >SC210003 3'UTR clone of NM_001724

The sequence shown below is from the reference sequence of NM_001724. The complete

sequence of this clone may contain minor differences, such as SNPs.

Blue=Stop Codon Red=Cloning site

GGCAAGTTGGACGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCGGAAAGATCGCCGTG

TAACAATTGGCAGAGCTCAGAATTCAAGCGATCGCC

ATTAGTTTAAAAATAAAGTTCCTGATAATAAAGTGACTGAAAAATGGCATCCCCAAA

CGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGG

Restriction Sites: Sgfl-Mlul

OTI Disclaimer: Our molecular clone sequence data has been matched to the sequence identifier above as a

point of reference. Note that the complete sequence of this clone is largely the same as the

reference sequence but may contain minor differences, e.g., single nucleotide

polymorphisms (SNPs).

OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200

CN: techsupport@origene.cn

Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com

BPGM (NM_001724) Human 3' UTR Clone - SC210003

Components: The cDNA clone is shipped in a 2-D bar-coded Matrix tube as 10 ug dried plasmid DNA. The

package also includes 100 pmols of both the corresponding 5' and 3' vector primers in

separate vials.

RefSeq: <u>NM 001724.5</u>

Summary: 2,3-diphosphoglycerate (2,3-DPG) is a small molecule found at high concentrations in red

blood cells where it binds to and decreases the oxygen affinity of hemoglobin. This gene encodes a multifunctional enzyme that catalyzes 2,3-DPG synthesis via its synthetase activity, and 2,3-DPG degradation via its phosphatase activity. The enzyme also has phosphoglycerate phosphomutase activity. Deficiency of this enzyme increases the affinity of cells for oxygen. Mutations in this gene result in hemolytic anemia. Multiple alternatively spliced variants,

encoding the same protein, have been identified. [provided by RefSeq, Sep 2009]

Locus ID: 669 **MW:** 31.4