

Product datasheet for SC209373

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

Phosphoserine phosphatase (PSPH) (NM_004577) Human 3' UTR Clone

Product data:

Product Type: 3' UTR Clones

Product Name: Phosphoserine phosphatase (PSPH) (NM_004577) Human 3' UTR Clone

Vector: pMirTarget (PS100062)

Symbol: PSPH

Synonyms: PSP; PSPHD ACCN: NM_004577

Insert Size: 728 bp

Insert Sequence: >SC209373 3'UTR clone of NM_004577

The sequence shown below is from the reference sequence of NM_004577. The complete

sequence of this clone may contain minor differences, such as SNPs.

Blue=Stop Codon Red=Cloning site

GGCAAGTTGGACGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCGGAAAGATCGCCGTG

TAACAATTGGCAGAGCTCAGAATTCAAGCGATCGCC

 ${\tt CTTTGGTATGTCAATAAAAGTTTATCCGTATGTCAGAA}$

ACGCGTAAGCGGCCGCGCATCTAGATTCGAAGAAAATGACCGACCAAGCGACGCCCAACCTGCCATCA

CGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGG

Restriction Sites: Sgfl-Mlul

OTI Disclaimer: Our molecular clone sequence data has been matched to the sequence identifier above as a

point of reference. Note that the complete sequence of this clone is largely the same as the

reference sequence but may contain minor differences, e.g., single nucleotide

polymorphisms (SNPs).

Phosphoserine phosphatase (PSPH) (NM_004577) Human 3' UTR Clone - SC209373

Components: The cDNA clone is shipped in a 2-D bar-coded Matrix tube as 10 ug dried plasmid DNA. The

package also includes 100 pmols of both the corresponding 5' and 3' vector primers in

separate vials.

RefSeq: <u>NM 004577.4</u>

Summary: The protein encoded by this gene belongs to a subfamily of the phosphotransferases. This

encoded enzyme is responsible for the third and last step in L-serine formation. It catalyzes magnesium-dependent hydrolysis of L-phosphoserine and is also involved in an exchange reaction between L-serine and L-phosphoserine. Deficiency of this protein is thought to be

linked to Williams syndrome. [provided by RefSeq, Jul 2008]

Locus ID: 5723 **MW:** 27.9