

Product datasheet for SC208291

DDOST (NM_005216) Human 3' UTR Clone

Product data:

Product Type: 3' UTR Clones

Product Name: DDOST (NM 005216) Human 3' UTR Clone

Vector: pMirTarget (PS100062)

Symbol: DDOST

Synonyms: AGER1; CDG1R; GATD6; OKSWcl45; OST; OST48; WBP1

ACCN: NM_005216

Insert Size: 632 bp

Insert Sequence: >SC208291 3'UTR clone of NM_005216

The sequence shown below is from the reference sequence of NM_005216. The complete

sequence of this clone may contain minor differences, such as SNPs.

Blue=Stop Codon Red=Cloning site

GGCAAGTTGGACGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCGGAAAGATCGCCGTG

TAACAATTGGCAGAGCTCAGAATTCAAGCGATCGCC

TTGCCCTCAAA

ACGCGTAAGCGGCCGCGCATCTAGATTCGAAGAAAATGACCGACCAAGCGACGCCCAACCTGCCATCA

CGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGG

Restriction Sites: Sgfl-Mlul

OTI Disclaimer: Our molecular clone sequence data has been matched to the sequence identifier above as a

point of reference. Note that the complete sequence of this clone is largely the same as the

reference sequence but may contain minor differences, e.g., single nucleotide

polymorphisms (SNPs).

Components: The cDNA clone is shipped in a 2-D bar-coded Matrix tube as 10 ug dried plasmid DNA. The

package also includes 100 pmols of both the corresponding 5' and 3' vector primers in

separate vials.

OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200

CN: techsupport@origene.cn

Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com

DDOST (NM_005216) Human 3' UTR Clone - SC208291

RefSeq: <u>NM 005216.5</u>

Summary: This gene encodes a component of the oligosaccharyltransferase complex which catalyzes

the transfer of high-mannose oligosaccharides to asparagine residues on nascent polypeptides in the lumen of the rough endoplasmic reticulum. The protein complex copurifies with ribosomes. The product of this gene is also implicated in the processing of advanced glycation endproducts (AGEs), which form from non-enzymatic reactions between sugars and proteins or lipids and are associated with aging and hyperglycemia. [provided by

RefSeq, Jul 2008]

Locus ID: 1650

MW: 23.3