

Product datasheet for SC207551

GLDC (NM 000170) Human 3' UTR Clone

Product data:

Product Type: 3' UTR Clones

Product Name: GLDC (NM_000170) Human 3' UTR Clone

Vector: pMirTarget (PS100062)

Symbol: GLDC

Synonyms: GCE; GCSP; HYGN1

ACCN: NM_000170

Insert Size: 580 bp

Insert Sequence: >SC207551 3'UTR clone of NM_000170

The sequence shown below is from the reference sequence of NM_000170. The complete

sequence of this clone may contain minor differences, such as SNPs.

Blue=Stop Codon Red=Cloning site

GGCAAGTTGGACGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCGGAAAGATCGCCGTG

TAACAATTGGCAGAGCTCAGAATTCAAGCGATCGCC

CGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGG

Restriction Sites: Sgfl-Mlul

OTI Disclaimer: Our molecular clone sequence data has been matched to the sequence identifier above as a

point of reference. Note that the complete sequence of this clone is largely the same as the

reference sequence but may contain minor differences, e.g., single nucleotide

polymorphisms (SNPs).

Components: The cDNA clone is shipped in a 2-D bar-coded Matrix tube as 10 ug dried plasmid DNA. The

package also includes 100 pmols of both the corresponding 5' and 3' vector primers in

separate vials.

OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200

CN: techsupport@origene.cn

Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com

GLDC (NM_000170) Human 3' UTR Clone - SC207551

RefSeq: <u>NM 000170.3</u>

Summary: Degradation of glycine is brought about by the glycine cleavage system, which is composed of

four mitochondrial protein components: P protein (a pyridoxal phosphate-dependent glycine decarboxylase), H protein (a lipoic acid-containing protein), T protein (a tetrahydrofolate-requiring enzyme), and L protein (a lipoamide dehydrogenase). The protein encoded by this gene is the P protein, which binds to glycine and enables the methylamine group from glycine

to be transferred to the T protein. Defects in this gene are a cause of nonketotic

hyperglycinemia (NKH).[provided by RefSeq, Jan 2010]

Locus ID: 2731 MW: 22.4