

Product datasheet for SC206548

ISCU (NM 213595) Human 3' UTR Clone

Product data:

Product Type: 3' UTR Clones

Product Name: ISCU (NM_213595) Human 3' UTR Clone

Symbol: ISCU

Synonyms: 2310020H20Rik; HML; hnifU; ISU2; NIFU; NIFUN

Mammalian Cell

Selection:

Neomycin

Vector: pMirTarget (PS100062)

ACCN: NM_213595

Insert Size: 482 bp

The sequence shown below is from the reference sequence of NM_213595. The complete

sequence of this clone may contain minor differences, such as SNPs.

Blue=Stop Codon Red=Cloning site

GGCAAGTTGGACGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCGGAAAGATCGCCGTG

TAACAATTGGCAGAGCTCAGAATTCAAGCGATCGCC

CGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGG

Restriction Sites: Sgfl-Mlul

OTI Disclaimer: Our molecular clone sequence data has been matched to the sequence identifier above as a

point of reference. Note that the complete sequence of this clone is largely the same as the

reference sequence but may contain minor differences, e.g., single nucleotide

polymorphisms (SNPs).

Components: The cDNA clone is shipped in a 2-D bar-coded Matrix tube as 10 ug dried plasmid DNA. The

package also includes 100 pmols of both the corresponding 5' and 3' vector primers in

separate vials.

OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200

CN: techsupport@origene.cn

Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com

RefSeq: <u>NM 213595.4</u>

Summary: This gene encodes a component of the iron-sulfur (Fe-S) cluster scaffold. Fe-S clusters are

cofactors that play a role in the function of a diverse set of enzymes, including those that regulate metabolism, iron homeostasis, and oxidative stress response. Alternative splicing results in transcript variants encoding different protein isoforms that localize either to the cytosol or to the mitochondrion. Mutations in this gene have been found in patients with hereditary myopathy with lactic acidosis. A disease-associated mutation in an intron may activate a cryptic splice site, resulting in the production of a splice variant encoding a putatively non-functional protein. A pseudogene of this gene is present on chromosome 1.

[provided by RefSeq, Feb 2016]

Locus ID: 23479 **MW:** 18.4