

## **Product datasheet for SC205361**

## ATP5MPL (NM\_004894) Human 3' UTR Clone

**Product data:** 

Product Type: 3' UTR Clones

Symbol: ATP5MPL

**Synonyms:** 6.8PL; C14orf2; MLQ; MP68; PLPM

Mammalian Cell Neomycin

Selection:

Vector: pMirTarget (PS100062)

ACCN: NM\_004894

Insert Size: 408 bp

Insert Sequence: >SC205361 3'UTR clone of NM\_004894

The sequence shown below is from the reference sequence of NM\_004894. The complete sequence of

this clone may contain minor differences, such as SNPs.

Blue=Stop Codon Red=Cloning site

GGCAAGTTGGACGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCGGAAAGATCGCCGTG

TAACAATTGGCAGAGCTCAGAATTCAAGCGATCGCC

CGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGG

Restriction Sites: Sgfl-Mlul

Our molecular clone sequence data has been matched to the sequence identifier above as a

point of reference. Note that the complete sequence of this clone is largely the same as the reference sequence but may contain minor differences, e.g., single nucleotide polymorphisms

(SNPs).



**OriGene Technologies, Inc.** 9620 Medical Center Drive, Ste 200

Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com

EU: info-de@origene.com CN: techsupport@origene.cn



## ATP5MPL (NM\_004894) Human 3' UTR Clone | SC205361

Components: The cDNA clone is shipped in a 2-D bar-coded Matrix tube as 10 ug dried plasmid DNA. The

package also includes 100 pmols of both the corresponding 5' and 3' vector primers in

separate vials.

Note: Plasmids are not sterile. For experiments where strict sterility is required, filtration with 0.22um

filter is required.

**RefSeq:** <u>NM\_004894.3</u>

Summary: Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP

from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). Minor subunit required to

maintain the ATP synthase population in the mitochondria (PubMed:24330338).

[UniProtKB/Swiss-Prot Function]

**Locus ID:** 9556

**MW:** 14.9