

Product datasheet for RG240133

BLM (NM_001287246) Human Tagged ORF Clone

Product data:

Product Type: Expression Plasmids

Product Name: BLM (NM_001287246) Human Tagged ORF Clone

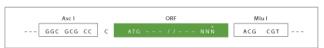
Tag: TurboGFP

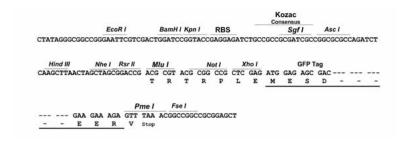
Symbol: BLM

Synonyms: BS; MGRISCE1; RECQ2; RECQL2; RECQL3

Mammalian Cell Neomycin

Selection:

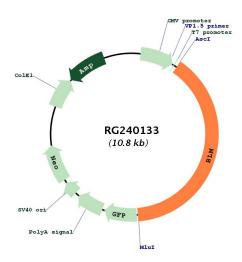

Vector: pCMV6-AC-GFP (PS100010)


E. coli Selection: Ampicillin (100 ug/mL)

Restriction Sites: Ascl-Mlul

Cloning Scheme:

Cloning sites used for ORF Shuttling:


OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200

CN: techsupport@origene.cn

Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com

Plasmid Map:

ACCN: NM_001287246

ORF Size: 4251 bp

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of

reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

Components: The ORF clone is ion-exchange column purified and shipped in a 2D barcoded Matrix tube

containing 10ug of transfection-ready, dried plasmid DNA (reconstitute with 100 ul of water).

RefSeq: <u>NM 001287246.2</u>

RefSeq Size:4665 bpRefSeq ORF:4254 bp

Locus ID: 641

 UniProt ID:
 P54132

 Cytogenetics:
 15q26.1

Protein Families: Druggable Genome, Stem cell - Pluripotency

BLM (NM_001287246) Human Tagged ORF Clone - RG240133

Protein Pathways: Homologous recombination

MW: 159.5 kDa

Gene Summary: The Bloom syndrome is an autosomal recessive disorder characterized by growth deficiency,

microcephaly and immunodeficiency among others. It is caused by homozygous or compound heterozygous mutation in the gene encoding DNA helicase RecQ protein on chromosome 15q26. This Bloom-associated helicase unwinds a variety of DNA substrates including Helliday junction, and is involved in soveral nathways contributing to the

including Holliday junction, and is involved in several pathways contributing to the

maintenance of genome stability. Identification of pathogenic Bloom variants is required for heterozygote testing in at-risk families. [provided by RefSeq, May 2020]