

Product datasheet for RC231447L3V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

NMDAR1 (GRIN1) (NM 001185090) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: NMDAR1 (GRIN1) (NM 001185090) Human Tagged ORF Clone Lentiviral Particle

Symbol: NMDAR1

Synonyms: GluN1; MRD8; NDHMSD; NDHMSR; NMD-R1; NMDA1; NMDAR1; NR1

Mammalian Cell

Selection:

Puromycin

Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092)

Tag: Myc-DDK

ACCN: NM_001185090

ORF Size: 2829 bp

ORF Nucleotide

OTI Disclaimer:

The ORF insert of this clone is exactly the same as(RC231447).

Sequence:

The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeg: NM 001185090.1

 RefSeq ORF:
 2832 bp

 Locus ID:
 2902

 UniProt ID:
 Q05586

 Cytogenetics:
 9q34.3

Protein Families: Druggable Genome, Ion Channels: Glutamate Receptors, Transmembrane

Protein Pathways: Alzheimer's disease, Amyotrophic lateral sclerosis (ALS), Calcium signaling pathway,

Huntington's disease, Long-term potentiation, Neuroactive ligand-receptor interaction

MW:

106.5 kDa

Gene Summary:

The protein encoded by this gene is a critical subunit of N-methyl-D-aspartate receptors, members of the glutamate receptor channel superfamily which are heteromeric protein complexes with multiple subunits arranged to form a ligand-gated ion channel. These subunits play a key role in the plasticity of synapses, which is believed to underlie memory and learning. Cell-specific factors are thought to control expression of different isoforms, possibly contributing to the functional diversity of the subunits. Alternatively spliced transcript variants have been described. [provided by RefSeq, Jul 2008]