

Product datasheet for RC231372L2V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

LDL Receptor (LDLR) (NM 001195803) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: LDL Receptor (LDLR) (NM_001195803) Human Tagged ORF Clone Lentiviral Particle

Symbol: LDL Receptor

Synonyms: FH; FHC; FHCL1; LDLCQ2

Mammalian Cell

Selection:

None

Vector: pLenti-C-mGFP (PS100071)

Tag: mGFP

ACCN: NM_001195803

ORF Size: 2046 bp

ORF Nucleotide

The ORF insert of this clone is exactly the same as(RC231372).

Sequence:

OTI Disclaimer:

The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeg: NM 001195803.1

 RefSeq ORF:
 2049 bp

 Locus ID:
 3949

 UniProt ID:
 P01130

 Cytogenetics:
 19p13.2

Protein Families: Druggable Genome, ES Cell Differentiation/IPS, Transmembrane

Protein Pathways: Endocytosis

MW: 76.3 kDa

LDL Receptor (LDLR) (NM_001195803) Human Tagged ORF Clone Lentiviral Particle – RC231372L2V

Gene Summary:

The low density lipoprotein receptor (LDLR) gene family consists of cell surface proteins involved in receptor-mediated endocytosis of specific ligands. Low density lipoprotein (LDL) is normally bound at the cell membrane and taken into the cell ending up in lysosomes where the protein is degraded and the cholesterol is made available for repression of microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting step in cholesterol synthesis. At the same time, a reciprocal stimulation of cholesterol ester synthesis takes place. Mutations in this gene cause the autosomal dominant disorder, familial hypercholesterolemia. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Sep 2010]