

Product datasheet for RC226289L4V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200
Rockville, MD 20850, US
Phone: +1-888-267-4436
https://www.origene.com
techsupport@origene.com
EU: info-de@origene.com
CN: techsupport@origene.cn

PIGG (NM_001127178) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Symbol: PIGG

Synonyms: GPI7; LAS21; MRT53; PRO4405; RLGS1930

Mammalian Cell Puromycin

Selection:

Vector: pLenti-C-mGFP-P2A-Puro (PS100093)

Tag: mGFP

ACCN: NM_001127178

ORF Size: 2949 bp

ORF Nucleotide Sequence: The ORF insert of this clone is exactly the same as(RC226289).

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of

reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeq: <u>NM_001127178.1</u>

RefSeq Size: 3266 bp

RefSeq ORF: 2952 bp

Locus ID: 54872

UniProt ID: Q5H8A4

Cytogenetics: 4p16.3

PIGG (NM_001127178) Human Tagged ORF Clone Lentiviral Particle | RC226289L4V

Protein Families: Transmembrane

Protein Pathways: Glycosylphosphatidylinositol(GPI)-anchor biosynthesis

MW: 108.6 kDa

Gene Summary: This gene encodes an enzyme involved in glycosylphosphatidylinositol-anchor biosynthesis.

The encoded protein, which is localized to the endoplasmic reticulum, is involved in

transferring ethanoloamine phosphate to mannose 2 of glycosylphosphatidylinositol species H7 to form species H8. Allelic variants of this gene have been associated with intellectual disability, hypotonia, and early-onset seizures. Alternative splicing results in multiple transcript

variants. [provided by RefSeq, Sep 2016]