

Product datasheet for RC224610L4V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200
Rockville, MD 20850, US
Phone: +1-888-267-4436
https://www.origene.com
techsupport@origene.com
EU: info-de@origene.com
CN: techsupport@origene.cn

Glutamate receptor ionotropic, NMDA 2D (GRIN2D) (NM_000836) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Symbol: Glutamate receptor ionotropic, NMDA 2D

Synonyms: DEE46; EB11; EIEE46; GluN2D; NMDAR2D; NR2D

Mammalian Cell Puromycin

Selection:

Vector: pLenti-C-mGFP-P2A-Puro (PS100093)

Tag: mGFP

ACCN: NM_000836

ORF Size: 4008 bp

ORF Nucleotide Sequence: The ORF insert of this clone is exactly the same as(RC224610).

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of

reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeq: <u>NM_000836.1</u>

RefSeq Size: 4299 bp

RefSeq ORF: 4011 bp

Locus ID: 2906

UniProt ID: <u>015399</u>

Glutamate receptor ionotropic, NMDA 2D (GRIN2D) (NM_000836) Human Tagged ORF Clone Lentiviral Particle | RC224610L4V

Cytogenetics: 19q13.33

Protein Families: Druggable Genome, Ion Channels: Glutamate Receptors, Transmembrane

Protein Pathways: Alzheimer's disease, Amyotrophic lateral sclerosis (ALS), Calcium signaling pathway, Long-

term potentiation, Neuroactive ligand-receptor interaction

MW: 143.75 kDa

Gene Summary: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA

channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit

NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C), and NMDAR2D (GRIN2D). [provided by RefSeq, Mar 2010]