

Product datasheet for RC224304L3V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

ADH7 (NM_000673) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: ADH7 (NM_000673) Human Tagged ORF Clone Lentiviral Particle

Symbol: ADH7
Synonyms: ADH4

Mammalian Cell Puromycin

Selection:

Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092)

 Tag:
 Myc-DDK

 ACCN:
 NM_000673

 ORF Size:
 1158 bp

ORF Nucleotide

Sequence:

The ORF insert of this clone is exactly the same as(RC224304).

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This

clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeg: NM 000673.3, NP 000664.2

RefSeq Size:2307 bpRefSeq ORF:1125 bpLocus ID:131

 UniProt ID:
 P40394

 Cytogenetics:
 4q23

Protein Families: Druggable Genome

ADH7 (NM_000673) Human Tagged ORF Clone Lentiviral Particle - RC224304L3V

Protein Pathways: Drug metabolism - cytochrome P450, Fatty acid metabolism, Glycolysis / Gluconeogenesis,

Metabolic pathways, Metabolism of xenobiotics by cytochrome P450, Retinol metabolism,

Tyrosine metabolism

MW: 41.5 kDa

Gene Summary: This gene encodes class IV alcohol dehydrogenase 7 mu or sigma subunit, which is a member

of the alcohol dehydrogenase family. Members of this family metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. The enzyme encoded by this gene is inefficient in ethanol oxidation, but is the most active as a retinol dehydrogenase; thus it may participate in the synthesis of retinoic acid, a hormone important for cellular differentiation. The expression of this gene is much more abundant in stomach than liver, thus differing from the other known gene family members. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct

2009]