

Product datasheet for RC223864L2

PDE1A (NM_001003683) Human Tagged Lenti ORF Clone

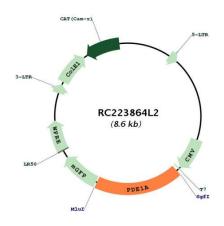
Product data:

Product Type:	Expression Plasmids
Product Name:	PDE1A (NM_001003683) Human Tagged Lenti ORF Clone
Tag:	mGFP
Symbol:	PDE1A
Synonyms:	CAM-PDE-1A; CAM-PDE 1A; HCAM-1; HCAM1; HSPDE1A
Mammalian Cell Selection:	None
Vector:	pLenti-C-mGFP (PS100071)
E. coli Selection:	Chloramphenicol (34 ug/mL)
ORF Nucleotide Sequence:	The ORF insert of this clone is exactly the same as(RC223864).
Restriction Sites:	Sgfl-Mlul
Cloning Scheme:	
	Cloning sites used for ORF Shuttling:
	<i>Sgf I</i> ORF <i>MIu I</i> GCG ATC GC C <mark>ATG // NNN</mark> ACG CGT]

ACCN: ORF Size: NM_001003683 1605 bp

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn



This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2024 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US

of DNA in E. coli are highly likely to result in mutations and/or rearrangements. Therefore, OriGene does not guarantee the capability to replicate this plasmid DNA. Additional amounts areduced cost. Please contact our customer care team at custsupport@origene.com or by calling 301.340.3188 option 3 for pricing and delivery.The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More infoOTI Annotation:This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene.Components:The ORF clone is ion-exchange column purified and shipped in a 2D barcoded Matrix tube containing 10ug of transfection-ready, dried plasmid DNA (reconstitute with 100 ul of water).Reconstitution Method:1. Centrifuge at 5,000xg for 5min. 2. Carefully open the tube and add 100ul of sterile water to dissolve the DNA. 3. Close the tube and incubate for 10 minutes at room temperature. 4. Briefly vortex the tube and then do a quick spin (less than 5000xg) to concentrate the liquid at the bottom.S. Store the suspended plasmid at -20°C.Stabe for at least one year from date of shipping when stored at -20°C.RefSeq:MM 001003683.1, NP 001003683.1RefSeq Size:2009 bpCyclogenetics:24750Cycogenetics:24750Cycogenetics:242550Cycogenetics:242550Cycogenetics:242550 </th <th>OTI Disclaimer:</th> <th>Due to the inherent nature of this plasmid, standard methods to replicate additional amounts</th>	OTI Disclaimer:	Due to the inherent nature of this plasmid, standard methods to replicate additional amounts
reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More infoOTI Annotation:This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene.Components:The ORF clone is ion-exchange column purified and shipped in a 2D barcoded Matrix tube containing 10u go f transfection-ready, dried plasmid DNA (reconstitute with 100 ul of water).Reconstitution Method:1. Centrifuge at 5,000 xg for 5min. 2. Carefully open the tube and add 100ul of sterile water to dissolve the DNA. 3. Close the tube and incubate for 10 minutes at room temperature. 4. Briefly vortex the tube and then do a quick spin (less than 5000xg) to concentrate the liquid at the bottom. 5. Store the suspended plasmid at -20°C. The DNA is stable for at least one year from date of shipping when stored at -20°C.Refseq:NM 001003683.1, NP 001003683.1Refseq ORF:1608 bpLocus ID:P54750Cytogenetics:2q32.1Protein Families:Druggable GenomeProtein Families:Druggable GenomeProtein Pathways:Calcium signaling pathway, Progesterone-mediated oocyte maturation, Purine metabolism, Taste transductionMW:61.1 kDaGene Summary:Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide sconcentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside S-prime monophosphates. Member		of DNA in E. coli are highly likely to result in mutations and/or rearrangements. Therefore, OriGene does not guarantee the capability to replicate this plasmid DNA. Additional amounts of DNA can be purchased from OriGene with batch-specific, full-sequence verification at a reduced cost. Please contact our customer care team at <u>custsupport@origene.com</u> or by
 varies depending on the nature of the gene. Components: The ORF clone is ion-exchange column purified and shipped in a 2D barcoded Matrix tube containing 10ug of transfection-ready, dried plasmid DNA (reconstitute with 100 ul of water). Reconstitution Method: 1. Centrifuge at 5,000xg for 5min. 2. Carefully open the tube and add 100ul of sterile water to dissolve the DNA. 3. Close the tube and incubate for 10 minutes at room temperature. 4. Briefly vortex the tube and then do a quick spin (less than 5000xg) to concentrate the liquid at the bottom. 5. Store the suspended plasmid at -20°C. The DNA is stable for at least one year from date of shipping when stored at -20°C. RefSeq Size: 2009 bp RefSeq ORF: 1608 bp Locus ID: 5136 UniProt ID: P54750 Cytogenetics: 2q32.1 Protein Families: Druggable Genome Protein Families: Druggable Genome Protein Families: Calcium signaling pathway, Progesterone-mediated oocyte maturation, Purine metabolism, Taste transduction MW: 61.1 kDa Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleoside 5-prime monophosphaes. Members of the PDE1 family, such as PDE1A, arc Ca(2+)/calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109]; 		reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing
containing 10ug of transfection-ready, dried plasmid DNA (reconstitute with 100 ul of water).Reconstitution Method:1. Centrifuge at 5,000xg for 5min. 2. Carefully open the tube and add 100ul of sterile water to dissolve the DNA. 3. Close the tube and incubate for 10 minutes at room temperature. 4. Briefly vortex the tube and then do a quick spin (less than 5000xg) to concentrate the liquid at the bottom. 5. Store the suspended plasmid at -20°C. The DNA is stable for at least one year from date of shipping when stored at -20°C.RefSeq:NM 001003683.1, NP 001003683.1RefSeq Size:2009 bpRefSeq ORF:1608 bpLocus ID:5136UniProt ID:P54750Cytogenetics:2q32.1Protein Families:Druggable GenomeProtein Families:Druggable GenomeMW:61.1 kDaGene Summary:Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109];	OTI Annotation:	
 2. Carefully open the tube and add 100ul of sterile water to dissolve the DNA. 3. Close the tube and incubate for 10 minutes at room temperature. 4. Briefly vortex the tube and then do a quick spin (less than 5000xg) to concentrate the liquid at the bottom. 5. Store the suspended plasmid at -20°C. The DNA is stable for at least one year from date of shipping when stored at -20°C. RefSeq: NM 001003683.1 NP 001003683.1 RefSeq ORF: 1608 bp Locus ID: 5136 UniProt ID: P54750 Cytogenetics: 2q32.1 Protein Families: Druggable Genome Protein Families: Calcium signaling pathway, Progesterone-mediated oocyte maturation, Purine metabolism, Taste transduction MW: 61.1 kDa Gene Summary: Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109]; 	Components:	
RefSeq Size:2009 bpRefSeq ORF:1608 bpLocus ID:5136UniProt ID:P54750Cytogenetics:2q32.1Protein Families:Druggable GenomeProtein Pathways:Calcium signaling pathway, Progesterone-mediated oocyte maturation, Purine metabolism, Taste transductionMW:61.1 kDaGene Summary:Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109];	Reconstitution Method:	 Carefully open the tube and add 100ul of sterile water to dissolve the DNA. Close the tube and incubate for 10 minutes at room temperature. Briefly vortex the tube and then do a quick spin (less than 5000xg) to concentrate the liquid at the bottom. Store the suspended plasmid at -20°C. The DNA is stable for at least one year from date of
RefSeq ORF:1608 bpLocus ID:5136UniProt ID:P54750Cytogenetics:2q32.1Protein Families:Druggable GenomeProtein Pathways:Calcium signaling pathway, Progesterone-mediated oocyte maturation, Purine metabolism, Taste transductionMW:61.1 kDaGene Summary:Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109];	RefSeq:	<u>NM 001003683.1, NP 001003683.1</u>
Jocus ID:5136JniProt ID:P54750Cytogenetics:2q32.1Protein Families:Druggable GenomeProtein Pathways:Calcium signaling pathway, Progesterone-mediated oocyte maturation, Purine metabolism, Taste transductionVW:61.1 kDaGene Summary:Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109];	RefSeq Size:	2009 bp
JniProt ID:P54750Cytogenetics:2q32.1Protein Families:Druggable GenomeProtein Pathways:Calcium signaling pathway, Progesterone-mediated oocyte maturation, Purine metabolism, Taste transductionMW:61.1 kDaGene Summary:Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109];	RefSeq ORF:	1608 bp
Cytogenetics:2q32.1Protein Families:Druggable GenomeProtein Pathways:Calcium signaling pathway, Progesterone-mediated oocyte maturation, Purine metabolism, Taste transductionVW:61.1 kDaGene Summary:Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109];	ocus ID:	5136
Protein Families:Druggable GenomeProtein Pathways:Calcium signaling pathway, Progesterone-mediated oocyte maturation, Purine metabolism, Taste transductionMW:61.1 kDaGene Summary:Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109];	JniProt ID:	<u>P54750</u>
 Protein Pathways: Calcium signaling pathway, Progesterone-mediated oocyte maturation, Purine metabolism, Taste transduction MW: 61.1 kDa Gene Summary: Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109]; 	Cytogenetics:	2q32.1
Taste transductionMW:61.1 kDaGene Summary:Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109];	Protein Families:	Druggable Genome
Gene Summary: Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109];	Protein Pathways:	
intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109];	MW:	61.1 kDa
	Gene Summary:	intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109];

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2024 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US

Product images:

Circular map for RC223864L2

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2024 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US