

Product datasheet for RC219758L1V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

Acid sphingomyelinase (SMPD1) (NM_000543) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: Acid sphingomyelinase (SMPD1) (NM_000543) Human Tagged ORF Clone Lentiviral Particle

Symbol: Acid sphingomyelinase

Synonyms: ASM; ASMASE; NPD

Mammalian Cell

Selection:

None

Vector: pLenti-C-Myc-DDK (PS100064)

Tag: Myc-DDK

ACCN: NM_000543

ORF Size: 1893 bp

ORF Nucleotide

The ORF insert of this clone is exactly the same as(RC219758).

Sequence:

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of

reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeg: NM 000543.3

 RefSeq Size:
 2473 bp

 RefSeq ORF:
 1896 bp

 Locus ID:
 6609

 UniProt ID:
 P17405

Cytogenetics: 11p15.4

Domains: Metallophos, SAPB

Protein Families: Druggable Genome, Transmembrane

Acid sphingomyelinase (SMPD1) (NM_000543) Human Tagged ORF Clone Lentiviral Particle – RC219758L1V

Protein Pathways: Lysosome, Metabolic pathways, Sphingolipid metabolism

MW: 69.94 kDa

Gene Summary: The protein encoded by this gene is a lysosomal acid sphingomyelinase that converts

sphingomyelin to ceramide. The encoded protein also has phospholipase C activity. Defects in this gene are a cause of Niemann-Pick disease type A (NPA) and Niemann-Pick disease type

B (NPB). Multiple transcript variants encoding different isoforms have been identified.

[provided by RefSeg, Jul 2010]