

Product datasheet for RC219221L1V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

Aldehyde Oxidase (AOX1) (NM 001159) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: Aldehyde Oxidase (AOX1) (NM_001159) Human Tagged ORF Clone Lentiviral Particle

Symbol: Aldehyde Oxidase

Synonyms: AO; AOH1

Mammalian Cell

Selection:

None

Vector: pLenti-C-Myc-DDK (PS100064)

 Tag:
 Myc-DDK

 ACCN:
 NM_001159

 ORF Size:
 4014 bp

ORF Nucleotide

The ORF insert of this clone is exactly the same as(RC219221).

Sequence:

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of

reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeq: <u>NM 001159.3</u>

 RefSeq Size:
 4949 bp

 RefSeq ORF:
 4017 bp

 Locus ID:
 316

 UniProt ID:
 Q06278

 Cytogenetics:
 2q33.1

Domains: Ald_Xan_dh_C, fer2, FAD_binding_5, fer2_2, CO_deh_flav_C

Protein Families: Druggable Genome

Aldehyde Oxidase (AOX1) (NM_001159) Human Tagged ORF Clone Lentiviral Particle – RC219221L1V

Protein Pathways: Drug metabolism - cytochrome P450, Metabolic pathways, Nicotinate and nicotinamide

metabolism, Tryptophan metabolism, Tyrosine metabolism, Valine, leucine and isoleucine

degradation, Vitamin B6 metabolism

MW: 147.7 kDa

Gene Summary: Aldehyde oxidase produces hydrogen peroxide and, under certain conditions, can catalyze

the formation of superoxide. Aldehyde oxidase is a candidate gene for amyotrophic lateral

sclerosis. [provided by RefSeq, Jul 2008]