

Product datasheet for RC218960L1V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

TrkB (NTRK2) (NM 001018065) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: TrkB (NTRK2) (NM_001018065) Human Tagged ORF Clone Lentiviral Particle

Symbol: TrkB

Synonyms: DEE58; EIEE58; GP145-TrkB; OBHD; trk-B; TRKB

Mammalian Cell

Selection:

None

Vector: pLenti-C-Myc-DDK (PS100064)

Tag: Myc-DDK

ACCN: NM_001018065

ORF Size: 1659 bp

ORF Nucleotide

The ORF insert of this clone is exactly the same as(RC218960).

Sequence:

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of

reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeq: NM 001018065.1, NP 001018075.1

 RefSeq Size:
 8696 bp

 RefSeq ORF:
 1662 bp

 Locus ID:
 4915

 UniProt ID:
 Q16620

Cytogenetics: 9q21.33

Protein Families: Druggable Genome, Protein Kinase, Transmembrane

Protein Pathways: MAPK signaling pathway, Neurotrophin signaling pathway

TrkB (NTRK2) (NM_001018065) Human Tagged ORF Clone Lentiviral Particle - RC218960L1V

MW: 60.99 kDa

Gene Summary: This gene encodes a member of the neurotrophic tyrosine receptor kinase (NTRK) family. This

kinase is a membrane-bound receptor that, upon neurotrophin binding, phosphorylates itself

and members of the MAPK pathway. Signalling through this kinase leads to cell differentiation. Mutations in this gene have been associated with obesity and mood

disorders. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May

2014]