Product datasheet for RC216876L2V

PRKAG2 (NM_001040633) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type:
Product Name:
Symbol:
Synonyms:
Mammalian Cell
Selection:
Vector:
Tag:
ACCN:
ORF Size:
ORF Nucleotide
Sequence:
OTI Disclaimer:

OTI Annotation:

RefSeq:
RefSeq Size:
RefSeq ORF:
Locus ID:
UniProt ID:
Cytogenetics:
Protein Families:

Lentiviral Particles
PRKAG2 (NM_001040633) Human Tagged ORF Clone Lentiviral Particle
PRKAG2
AAKG; AAKG2; CMH6; H91620p; WPWS
None
pLenti-C-mGFP (PS100071)
mGFP
NM_001040633
1575 bp
The ORF insert of this clone is exactly the same as(RC216876).

The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info
This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene.
NM 001040633.1 NP 001035723.1
3154 bp
1578 bp
51422
Q9UGJ0
7q36.1
Druggable Genome

Protein Pathways:	Adipocytokine signaling pathway, Hypertrophic cardiomyopathy (HCM), Insulin signaling pathway
MW:	58.4 kDa
Gene Summary:	AMP-activated protein kinase (AMPK) is a heterotrimeric protein composed of a catalytic alpha subunit, a noncatalytic beta subunit, and a noncatalytic regulatory gamma subunit.
	Various forms of each of these subunits exist, encoded by different genes. AMPK is an important energy-sensing enzyme that monitors cellular energy status and functions by inactivating key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This gene is a member of the AMPK gamma subunit family. Mutations in this gene have been associated with Wolff-Parkinson-White syndrome, familial hypertrophic cardiomyopathy, and glycogen storage disease of the heart. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jan 2015]

