Product datasheet for RC216359L3V

PYCR1 (NM_153824) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type:
Product Name:
Symbol:
Synonyms:
Mammalian Cell
Selection:
Vector:
Tag:
ACCN:
ORF Size:
ORF Nucleotide
Sequence:
OTI Disclaimer:

OTI Annotation:

RefSeq:
RefSeq Size:
RefSeq ORF:

Lentiviral Particles
PYCR1 (NM_153824) Human Tagged ORF Clone Lentiviral Particle PYCR1
ARCL2B; ARCL3B; P5C; P5CR; PIG45; PP222; PRO3; PYCR
Puromycin
pLenti-C-Myc-DDK-P2A-Puro (PS100092)
Myc-DDK
NM_153824
948 bp
The ORF insert of this clone is exactly the same as(RC216359).

Due to the inherent nature of this plasmid, standard methods to replicate additional amounts of DNA in E. coli are highly likely to result in mutations and/or rearrangements. Therefore, OriGene does not guarantee the capability to replicate this plasmid DNA. Additional amounts of DNA can be purchased from OriGene with batch-specific, full-sequence verification at a reduced cost. Please contact our customer care team at custsupport@origene.com or by calling 301.340.3188 option 3 for pricing and delivery.

The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info
This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene.
NM 153824.1
1768 bp
951 bp
Locus ID: 5831
UniProt ID: P32322
Cytogenetics: $17 q 25.3$
Domains: P5CR
Protein Pathways: Arginine and proline metabolism, Metabolic pathways
MW:
Gene Summary:
33.2 kDa

This gene encodes an enzyme that catalyzes the NAD(P)H-dependent conversion of pyrroline-5-carboxylate to proline. This enzyme may also play a physiologic role in the generation of NADP(+) in some cell types. The protein forms a homopolymer and localizes to the mitochondrion. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2013]

