

Product datasheet for RC216085L3V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

CRYBA2 (NM_005209) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: CRYBA2 (NM_005209) Human Tagged ORF Clone Lentiviral Particle

Symbol: CRYBA2

Synonyms: crystallin, beta A2; eye lens structural protein

Mammalian Cell

Selection:

Puromycin

Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092)

Tag: Myc-DDK
ACCN: NM 005209

ORF Size: 591 bp

ORF Nucleotide

Jucleotide The C

OTI Disclaimer:

Sequence:

The ORF insert of this clone is exactly the same as(RC216085).

The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeg: NM 005209.1, NP 005200.1

 RefSeq Size:
 709 bp

 RefSeq ORF:
 593 bp

 Locus ID:
 1412

 Cytogenetics:
 2q35

 MW:
 22.1 kDa

Gene Summary:

Crystallins are separated into two classes: taxon-specific, or enzyme, and ubiquitous. The latter class constitutes the major proteins of the vertebrate eye, which function to maintain the transparency and refractive index of the lens. Since lens central fiber cells lose their nuclei during development, these crystallins are made and then retained throughout life, making them extremely stable proteins. Mammalian lens crystallins are divided into alpha, beta, and gamma families; beta and gamma crystallins are also defined as a superfamily. Alpha and beta families are further divided into acidic and basic groups. Seven protein regions exist in crystallins: four homologous motifs, a connecting peptide, and N- and C-terminal extensions. Beta-crystallins, the most heterogeneous, differ by the presence of the C-terminal extension (present in the basic group but absent in the acidic group). Beta-crystallins form aggregates of different sizes and are able to form homodimers through self-association or heterodimers with other beta-crystallins. This gene is a beta acidic group member. Three alternatively spliced transcript variants encoding identical proteins have been reported. [provided by RefSeq, Jul 2008]