Product datasheet for **RC212870L1**

OSGIN1 (NM_182981) Human Tagged ORF Clone

Product data:

Product Type: Expression Plasmids
Product Name: OSGIN1 (NM_182981) Human Tagged ORF Clone
Tag: Myc-DDK
Symbol: OSGIN1
Synonyms: BDGI; OKL38
Vector: pLenti-C-Myc-DDK (PS100064)
E. coli Selection: Chloramphenicol (34 µg/mL)
Cell Selection: None
ORF Nucleotide Sequence: The ORF insert of this clone is exactly the same as (RC212870).
Restriction Sites: SgfI-MluI
Cloning Scheme:

```
<table>
<thead>
<tr>
<th>SgfI</th>
<th>ORF</th>
<th>MluI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGG ATC GCC ATG</td>
<td>...</td>
<td>ACG C GT</td>
</tr>
</tbody>
</table>
```

ACCN: NM_182981
ORF Size: 1431 bp
OTI Disclaimer:
The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info

OTI Annotation:
This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene.

RefSeq: NM_182981.1, NP_892026.1
RefSeq Size: 1930 bp
RefSeq ORF: 1434 bp
Locus ID: 29948
Cytogenetics: 16q23.3
MW: 51.8 kDa

Gene Summary:
This gene encodes an oxidative stress response protein that regulates cell death. Expression of the gene is regulated by p53 and is induced by DNA damage. The protein regulates apoptosis by inducing cytochrome c release from mitochondria. It also appears to be a key regulator of both inflammatory and anti-inflammatory molecules. The loss of this protein correlates with uncontrolled cell growth and tumor formation. Naturally occurring read-through transcription exists between this gene and the neighboring upstream malonyl-CoA decarboxylase (MLYCD) gene, but the read-through transcripts are unlikely to produce a protein product. [provided by RefSeq, Aug 2011]