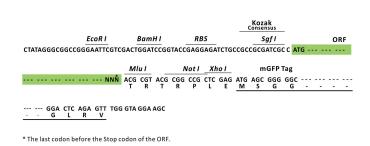


OriGene Technologies, Inc.


9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

Product datasheet for RC212337L4

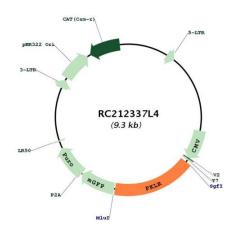
Pyruvate Kinase (PKLR) (NM_181871) Human Tagged Lenti ORF Clone

Product data:

Product Type:	Expression Plasmids
Product Name:	Pyruvate Kinase (PKLR) (NM_181871) Human Tagged Lenti ORF Clone
Tag:	mGFP
Symbol:	Pyruvate Kinase
Synonyms:	PK1; PKL; PKRL; RPK
Mammalian Cell Selection:	Puromycin
Vector:	pLenti-C-mGFP-P2A-Puro (PS100093)
E. coli Selection:	Chloramphenicol (34 ug/mL)
ORF Nucleotide Sequence:	The ORF insert of this clone is exactly the same as(RC212337).
Restriction Sites:	Sgfl-Mlul
Cloning Scheme:	
	Cloning sites used for ORF Shuttling:
	Sgf I ORF Mlu I GCG ATC GC C <mark>ATG // NNŇ</mark> ACG CGT

ACCN: ORF Size: NM_181871 1629 bp

View online »


This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2024 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US

of DNA in E. coli are highly likely to result in mutations and/or rearrangements. Therefore, DriGene does not guarantee the capability to replicate this plasmid DNA. Additional amounts of DNA can be purchased from OriGene with batch-specific, full-sequence verification at a reduced cost. Please contact our customer care team at <u>custsupport@origene.com</u> or by calling 301.340.3188 option 3 for pricing and delivery.The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ throug variants is recommended prior to use. <u>More infe</u> OTI Annotation:This clone was engineered to express the complete ORF with an expression tag. Expression variants is recommended prior to use. <u>More infe</u> OTI Annotation:The ORF clone is ion-exchange column purified and shipped in a 2D barcoded Matrix tube containing 10ug of transfection-ready, dried plasmid DNA (reconstitute with 100 ul of water).Reconstitution Method1. Centrifuge at 5,000xg for 5min. 2. Carefully open the tube and incubate for 10 minutes at room temperature. 4. Briefly vortex the tube and then do a quick spin (less than 5000xg) to concentrate the liqui at the bottom. 2. Store the suspended plasmid at -20°C. The DNA is stable for at least one year from date of shipping when stored at -20°C.RefSeq:NM 181871.1RefSeq Size:132Pa0613UniProt ID: Pa0613Cytogenetics:1422Protein Families:Drugable GenomeProtein Families:Drugable GenomeProtein Families:St.3 kDaGene Summary:Kiba GenomeProtein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylatio	Pyruvate Kinase (PKLR) (NM_181871) Human Tagged Lenti ORF Clone – RC212337L4	
reference only. However, individual transcript sequences of the same gene can differ througl naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More infoOTI Annotation:This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene.Components:The ORF clone is ion-exchange column purified and shipped in a 2D barcoded Matrix tube containing 10ug of transfection-ready, dried plasmid DNA (reconstitute with 100 ul of water).Reconstitution Method:1. Centrifuge at 5,000xg for 5min. 2. Carefully open the tube and add 100ul of sterile water to dissolve the DNA. 3. Close the tube and incubate for 10 minutes at room temperature. 4. Briefly ovrtex the tube and then do a quick spin (less than 5000xg) to concentrate the liqui at the bottom. 5. Store the suspended plasmid at -20°C. The DNA is stable for at least one year from date of shipping when stored at -20°C.RefSeq:NM 181871.1RefSeq ORF:1632 bpLocus ID:P30613Cytogenetics:1q22Protein Families:Druggable GenomeProtein Families:Druggable GenomeProtein Families:Glecolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitusMW:58.3 kDaGene Summary:The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. De	OTI Disclaimer:	OriGene does not guarantee the capability to replicate this plasmid DNA. Additional amounts of DNA can be purchased from OriGene with batch-specific, full-sequence verification at a reduced cost. Please contact our customer care team at <u>custsupport@origene.com</u> or by
varies depending on the nature of the gene.Components:The ORF clone is ion-exchange column purified and shipped in a 2D barcoded Matrix tube containing 10ug of transfection-ready, dried plasmid DNA (reconstitute with 100 ul of water).Reconstitution Method:1. Centrifuge at 5,000xg for 5min. 2. Carefully open the tube and add 100ul of sterile water to dissolve the DNA. 3. Close the tube and incubate for 10 minutes at room temperature. 4. Briefly vortex the tube and then do a quick spin (less than 5000xg) to concentrate the liqui at the bottom. 5. Store the suspended plasmid at -20°C. The DNA is stable for at least one year from date of shipping when stored at -20°C.RefSeq:NM 181871.1 RefSeq Size: 2433 bpRefSeq ORF:1632 bpLocus ID:5313UniProt ID:P30613 Cytogenetics:Protein Families:Druggable GenomeProtein Families:Druggable GenomeProtein Pathways:Glycolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitusMW:58.3 kDaGene Summary:The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variation are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this		reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing
containing 10ug of transfection-ready, dried plasmid DNA (reconstitute with 100 ul of water).Reconstitution Method:1. Centrifuge at 5,000xg for 5min. 2. Carefully open the tube and add 100ul of sterile water to dissolve the DNA. 3. Close the tube and incubate for 10 minutes at room temperature. 4. Briefly vortex the tube and then do a quick spin (less than 5000xg) to concentrate the liqui at the bottom. 5. Store the suspended plasmid at -20°C. The DNA is stable for at least one year from date of shipping when stored at -20°C.RefSeq:NM 181871.1RefSeq ORF:1632 bpLocus ID:5313UniProt ID:P30613Cytogenetics:1q22Protein Families:Druggable GenomeProtein Pathways:Glycolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young 	OTI Annotation:	
2. Carefully open the tube and add 100ul of sterile water to dissolve the DNA. 3. Close the tube and incubate for 10 minutes at room temperature. 4. Briefly vortex the tube and then do a quick spin (less than 5000xg) to concentrate the liqui at the bottom. 5. Store the suspended plasmid at -20°C. The DNA is stable for at least one year from date of shipping when stored at -20°C.RefSeq:NM 181871.1RefSeq ORF:1632 bpLocus ID:5313UniProt ID:P30613Cytogenetics:1q22Protein Families:Druggable GenomeProtein Families:Glycolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitusMW:58.3 kDaGene Summary:The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variation: are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this	Components:	The ORF clone is ion-exchange column purified and shipped in a 2D barcoded Matrix tube containing 10ug of transfection-ready, dried plasmid DNA (reconstitute with 100 ul of water).
RefSeq Size:2433 bpRefSeq ORF:1632 bpLocus ID:5313UniProt ID:P30613Cytogenetics:1q22Protein Families:Druggable GenomeProtein Pathways:Glycolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitusMW:58.3 kDaGene Summary:The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variations are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA) or HNSHA). Multiple transcript variants encoding different isoforms have been found for this	Reconstitution Met	 Carefully open the tube and add 100ul of sterile water to dissolve the DNA. Close the tube and incubate for 10 minutes at room temperature. Briefly vortex the tube and then do a quick spin (less than 5000xg) to concentrate the liquid at the bottom. Store the suspended plasmid at -20°C. The DNA is stable for at least one year from date of
RefSeq ORF:1632 bpLocus ID:5313UniProt ID:P30613Cytogenetics:1q22Protein Families:Druggable GenomeProtein Pathways:Glycolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitusMW:58.3 kDaGene Summary:The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variation: are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this	RefSeq:	<u>NM 181871.1</u>
Jocus ID:5313JniProt ID:P30613Cytogenetics:1q22Protein Families:Druggable GenomeProtein Pathways:Glycolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitusVW:58.3 kDaGene Summary:The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variation: are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this	RefSeq Size:	2433 bp
JniProt ID:P30613Cytogenetics:1q22Protein Families:Druggable GenomeProtein Pathways:Glycolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitusMW:58.3 kDaGene Summary:The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variations are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this	RefSeq ORF:	1632 bp
Cytogenetics:1q22Protein Families:Druggable GenomeProtein Pathways:Glycolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitusVW:58.3 kDaGene Summary:The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variations are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this	Locus ID:	5313
Protein Families:Druggable GenomeProtein Pathways:Glycolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitusWW:58.3 kDaGene Summary:The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variations are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this	JniProt ID:	<u>P30613</u>
Protein Pathways:Glycolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitusMW:58.3 kDaGene Summary:The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variation: are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this	Cytogenetics:	1q22
Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitus 58.3 kDa Gene Summary: The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variations are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this	Protein Families:	Druggable Genome
Gene Summary: The protein encoded by this gene is a pyruvate kinase that catalyzes the transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variations are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this	Protein Pathways:	Glycolysis / Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young, Metabolic pathways, Purine metabolism, Pyruvate metabolism, Type II diabetes mellitus
transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variations are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this	MW:	58.3 kDa
	Gene Summary:	transphosphorylation of phohsphoenolpyruvate into pyruvate and ATP, which is the rate- limiting step of glycolysis. Defects in this enzyme, due to gene mutations or genetic variations, are the common cause of chronic hereditary nonspherocytic hemolytic anemia (CNSHA or HNSHA). Multiple transcript variants encoding different isoforms have been found for this

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2024 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US

Product images:

Circular map for RC212337L4

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2024 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US