

Product datasheet for RC211329L1V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

PFKFB2 (NM_006212) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: PFKFB2 (NM_006212) Human Tagged ORF Clone Lentiviral Particle

Symbol: PFKFB2

Synonyms: PFK-2/FBPase-2

Mammalian Cell

Selection:

None

Vector: pLenti-C-Myc-DDK (PS100064)

 Tag:
 Myc-DDK

 ACCN:
 NM_006212

ORF Size: 1515 bp

ORF Nucleotide

The ORF insert of this clone is exactly the same as(RC211329).

Sequence:

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through

naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeq: <u>NM 006212.2</u>, <u>NP 006203.2</u>

 RefSeq Size:
 7073 bp

 RefSeq ORF:
 1518 bp

 Locus ID:
 5208

 UniProt ID:
 060825

 Cytogenetics:
 1q32.1

Domains: PGAM, 6PF2K

Protein Families: Druggable Genome

PFKFB2 (NM_006212) Human Tagged ORF Clone Lentiviral Particle - RC211329L1V

Protein Pathways: Fructose and mannose metabolism

MW: 58.5 kDa

Gene Summary: The protein encoded by this gene is involved in both the synthesis and degradation of

fructose-2,6-bisphosphate, a regulatory molecule that controls glycolysis in eukaryotes. The encoded protein has a 6-phosphofructo-2-kinase activity that catalyzes the synthesis of fructose-2,6-bisphosphate, and a fructose-2,6-biphosphatase activity that catalyzes the degradation of fructose-2,6-bisphosphate. This protein regulates fructose-2,6-bisphosphate levels in the heart, while a related enzyme encoded by a different gene regulates fructose-2,6-bisphosphate levels in the liver and muscle. This enzyme functions as a homodimer. Two transcript variants encoding two different isoforms have been found for this gene. [provided

by RefSeq, Jul 2008]