

Product datasheet for RC210709L2V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

Peroxiredoxin 5 (PRDX5) (NM 012094) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: Peroxiredoxin 5 (PRDX5) (NM_012094) Human Tagged ORF Clone Lentiviral Particle

Symbol: Peroxiredoxin 5

Synonyms: ACR1; AOEB166; B166; HEL-S-55; PLP; PMP20; PRDX6; prx-V; PRXV; SBBI10

Mammalian Cell

Selection:

None

Vector: pLenti-C-mGFP (PS100071)

Tag: mGFP

ACCN: NM_012094

ORF Size: 642 bp

ORF Nucleotide

The ORF insert of this clone is exactly the same as(RC210709).

Sequence:
OTI Disclaimer:

The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeg: NM 012094.3

RefSeq Size: 913 bp
RefSeq ORF: 645 bp
Locus ID: 25824
UniProt ID: P30044
Cytogenetics: 11q13.1
Domains: AhpC-TSA

Protein Families: Druggable Genome

Peroxiredoxin 5 (PRDX5) (NM_012094) Human Tagged ORF Clone Lentiviral Particle – RC210709L2V

MW:

22 kDa

Gene Summary:

This gene encodes a member of the peroxiredoxin family of antioxidant enzymes, which reduce hydrogen peroxide and alkyl hydroperoxides. The encoded protein interacts with peroxisome receptor 1 and plays an antioxidant protective role in different tissues under normal conditions and during inflammatory processes. The use of alternate transcription start sites is thought to result in transcript variants that use different in-frame translational start codons to generate isoforms that are targeted to the mitochondrion (isoform L) or peroxisome/cytoplasm (isoform S). Multiple related pseudogenes have been defined for this gene. [provided by RefSeq, Nov 2017]