

Product datasheet for RC209378L2V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

LDHA (NM 005566) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: LDHA (NM 005566) Human Tagged ORF Clone Lentiviral Particle

Symbol:

GSD11; HEL-S-133P; LDHM; PIG19 Synonyms:

Mammalian Cell

Selection:

None

Vector: pLenti-C-mGFP (PS100071)

mGFP Tag:

NM 005566 ACCN:

ORF Size: 996 bp

ORF Nucleotide

OTI Disclaimer:

Sequence:

The ORF insert of this clone is exactly the same as(RC209378).

The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeq: NM 005566.1

RefSeq Size: 1661 bp RefSeq ORF: 999 bp Locus ID: 3939 **UniProt ID:** P00338 Cytogenetics: 11p15.1

Domains: ldh

Protein Families: Druggable Genome

LDHA (NM_005566) Human Tagged ORF Clone Lentiviral Particle - RC209378L2V

Protein Pathways: Cysteine and methionine metabolism, Glycolysis / Gluconeogenesis, Metabolic pathways,

Propanoate metabolism, Pyruvate metabolism

MW: 36.5 kDa

Gene Summary: The protein encoded by this gene catalyzes the conversion of L-lactate and NAD to pyruvate

and NADH in the final step of anaerobic glycolysis. The protein is found predominantly in muscle tissue and belongs to the lactate dehydrogenase family. Mutations in this gene have been linked to exertional myoglobinuria. Multiple transcript variants encoding different isoforms have been found for this gene. The human genome contains several non-

transcribed pseudogenes of this gene. [provided by RefSeq, Sep 2008]