

Product datasheet for RC208049L3V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200
Rockville, MD 20850, US
Phone: +1-888-267-4436
https://www.origene.com
techsupport@origene.com
EU: info-de@origene.com
CN: techsupport@origene.cn

HIRA (NM_003325) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Symbol: HIRA

Synonyms: DGCR1; TUP1; TUPLE1

Mammalian Cell Puromycin

Selection:

Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092)

Tag: Myc-DDK

ACCN: NM_003325

ORF Size: 3051 bp

ORF Nucleotide Sequence: The ORF insert of this clone is exactly the same as(RC208049).

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of

reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeq: <u>NM_003325.3</u>

RefSeq Size: 4013 bp

RefSeq ORF: 3054 bp

Locus ID: 7290

UniProt ID: <u>P54198</u>

Cytogenetics: 22q11.21

HIRA (NM_003325) Human Tagged ORF Clone Lentiviral Particle | RC208049L3V

Domains: WD40

Protein Families: Transcription Factors

MW: 111.7 kDa

Gene Summary: This gene encodes a histone chaperone that preferentially places the variant histone H3.3 in

nucleosomes. Orthologs of this gene in yeast, flies, and plants are necessary for the formation of transcriptionally silent heterochomatin. This gene plays an important role in the formation of the senescence-associated heterochromatin foci. These foci likely mediate the irreversible cell cycle changes that occur in senescent cells. It is considered the primary candidate gene

in some haploinsufficiency syndromes such as DiGeorge syndrome, and insufficient

production of the gene may disrupt normal embryonic development. [provided by RefSeq, Jul

2008]