Product datasheet for **RC206679L2V**

**ADA (NM_000022) Human Tagged ORF Clone Lentiviral Particle**

**Product data:**

- **Product Type:** Lentiviral Particles
- **Product Name:** ADA (NM_000022) Human Tagged ORF Clone Lentiviral Particle
- **Symbol:** ADA
- **Synonyms:** adenosine aminohydrolase; adenosine deaminase
- **Vector:** pLenti-C-mGFP (PS100071)
- **ACCN:** NM_000022
- **ORF Size:** 1089 bp
- **ORF Nucleotide Sequence:** The ORF insert of this clone is exactly the same as (RC206679).
- **OTI Disclaimer:** The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info
- **OTI Annotation:** This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene.
- **RefSeq:** NM_000022.2, NP_000013.2
- **RefSeq Size:** 1566 bp
- **RefSeq ORF:** 1092 bp
- **Locus ID:** 100
- **Cytogenetics:** 20q13.12
- **Domains:** A_deaminase
- **Protein Families:** Druggable Genome
- **Protein Pathways:** Metabolic pathways, Primary immunodeficiency, Purine metabolism
- **MW:** 40.8 kDa
Gene Summary: This gene encodes an enzyme that catalyzes the hydrolysis of adenosine to inosine in the purine catabolic pathway. Various mutations have been described for this gene and have been linked to human diseases related to impaired immune function such as severe combined immunodeficiency disease (SCID) which is the result of a deficiency in the ADA enzyme. In ADA-deficient individuals there is a marked depletion of T, B, and NK lymphocytes, and consequently, a lack of both humoral and cellular immunity. Conversely, elevated levels of this enzyme are associated with congenital hemolytic anemia. [provided by RefSeq, Sep 2019]