

Product datasheet for RC205641L1V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

CDC25C (NM_001790) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: CDC25C (NM_001790) Human Tagged ORF Clone Lentiviral Particle

Symbol: CDC25C

Synonyms: CDC25; PPP1R60

Mammalian Cell

Selection:

None

Vector: pLenti-C-Myc-DDK (PS100064)

 Tag:
 Myc-DDK

 ACCN:
 NM_001790

ORF Size: 1419 bp

ORF Nucleotide

Sequence:

The ORF insert of this clone is exactly the same as(RC205641).

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through

naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeg: NM 001790.3, NP 001781.1

RefSeq Size: 2191 bp
RefSeq ORF: 1422 bp
Locus ID: 995

UniProt ID: P30307
Cytogenetics: 5q31.2
Domains: RHOD

Protein Families: Druggable Genome, Phosphatase, Stem cell - Pluripotency

CDC25C (NM_001790) Human Tagged ORF Clone Lentiviral Particle - RC205641L1V

Protein Pathways: Cell cycle, Oocyte meiosis, Progesterone-mediated oocyte maturation

MW: 53.3 kDa

Gene Summary: This gene encodes a conserved protein that plays a key role in the regulation of cell division.

The encoded protein directs dephosphorylation of cyclin B-bound CDC2 and triggers entry into mitosis. It also suppresses p53-induced growth arrest. Multiple alternatively spliced transcript variants of this gene have been described. [provided by RefSeq, Dec 2015]