

Product datasheet for RC204758L1V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

PCK1 (NM_002591) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: PCK1 (NM_002591) Human Tagged ORF Clone Lentiviral Particle

Symbol: PCK'

Synonyms: PCKDC; PEPCK-C; PEPCK1; PEPCKC

Mammalian Cell

Selection:

None

Vector: pLenti-C-Myc-DDK (PS100064)

 Tag:
 Myc-DDK

 ACCN:
 NM_002591

 ORF Size:
 1866 bp

ORF Nucleotide

1000 ph

Sequence:

The ORF insert of this clone is exactly the same as(RC204758).

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This

clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeq: <u>NM 002591.2</u>

 RefSeq Size:
 2692 bp

 RefSeq ORF:
 1869 bp

 Locus ID:
 5105

 UniProt ID:
 P35558

 Cytogenetics:
 20q13.31

Domains: PEPCK

Protein Families: Druggable Genome

PCK1 (NM_002591) Human Tagged ORF Clone Lentiviral Particle - RC204758L1V

Protein Pathways: Adipocytokine signaling pathway, Citrate cycle (TCA cycle), Glycolysis / Gluconeogenesis,

Insulin signaling pathway, Metabolic pathways, PPAR signaling pathway, Pyruvate metabolism

MW: 69.2 kDa

Gene Summary: This gene is a main control point for the regulation of gluconeogenesis. The cytosolic enzyme

encoded by this gene, along with GTP, catalyzes the formation of phosphoenolpyruvate from oxaloacetate, with the release of carbon dioxide and GDP. The expression of this gene can be regulated by insulin, glucocorticoids, glucagon, cAMP, and diet. Defects in this gene are a cause of cytosolic phosphoenolpyruvate carboxykinase deficiency. A mitochondrial isozyme

of the encoded protein also has been characterized. [provided by RefSeq, Jul 2008]