

Product datasheet for RC203177L1V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

AKR1B10 (NM 020299) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: AKR1B10 (NM 020299) Human Tagged ORF Clone Lentiviral Particle

Symbol:

AKR1B11; AKR1B12; ALDRLn; ARL-1; ARL1; HIS; HSI Synonyms:

Mammalian Cell

Selection:

None

Vector: pLenti-C-Myc-DDK (PS100064)

Myc-DDK Tag: NM 020299

ORF Size: 948 bp

ORF Nucleotide

The ORF insert of this clone is exactly the same as(RC203177).

Sequence:

ACCN:

The molecular sequence of this clone aligns with the gene accession number as a point of OTI Disclaimer:

> reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

NM 02029<u>9.3</u>, NP 064695.2 RefSeq:

RefSeq Size: 1610 bp RefSeq ORF: 951 bp Locus ID: 57016 **UniProt ID:** O60218 Cytogenetics: 7q33

Domains: aldo_ket_red

Protein Families: Druggable Genome

AKR1B10 (NM_020299) Human Tagged ORF Clone Lentiviral Particle - RC203177L1V

Protein Pathways: Butanoate metabolism, Fructose and mannose metabolism, Linoleic acid metabolism,

Metabolic pathways

MW: 36 kDa

Gene Summary: This gene encodes a member of the aldo/keto reductase superfamily, which consists of more

than 40 known enzymes and proteins. This member can efficiently reduce aliphatic and aromatic aldehydes, and it is less active on hexoses. It is highly expressed in adrenal gland, small intestine, and colon, and may play an important role in liver carcinogenesis. [provided

by RefSeq, Jul 2008]