

Product datasheet for RC200922L2V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

PFKL (NM_002626) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: PFKL (NM_002626) Human Tagged ORF Clone Lentiviral Particle

Symbol: PFKI

Synonyms: ATP-PFK; PFK-B; PFK-L

Mammalian Cell

Selection:

None

Vector: pLenti-C-mGFP (PS100071)

Tag: mGFP

ACCN: NM_002626 **ORF Size:** 2340 bp

ORF Nucleotide

OTI Disclaimer:

- - - -

Sequence:

The ORF insert of this clone is exactly the same as(RC200922).

The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeg: NM 002626.4

 RefSeq Size:
 2934 bp

 RefSeq ORF:
 2343 bp

 Locus ID:
 5211

 UniProt ID:
 P17858

 Cytogenetics:
 21q22.3

Domains: PFK

Protein Families: Druggable Genome

PFKL (NM_002626) Human Tagged ORF Clone Lentiviral Particle - RC200922L2V

Protein Pathways: Fructose and mannose metabolism, Galactose metabolism, Glycolysis / Gluconeogenesis,

Metabolic pathways, Pentose phosphate pathway

MW: 85 kDa

Gene Summary: This gene encodes the liver (L) subunit of an enzyme that catalyzes the conversion of D-

fructose 6-phosphate to D-fructose 1,6-bisphosphate, which is a key step in glucose metabolism (glycolysis). This enzyme is a tetramer that may be composed of different subunits encoded by distinct genes in different tissues. Alternative splicing results in multiple

transcript variants. [provided by RefSeq, Mar 2014]