

Product datasheet for RC200472L2V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

Glucokinase (GCK) (NM 000162) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: Glucokinase (GCK) (NM 000162) Human Tagged ORF Clone Lentiviral Particle

Symbol:

FGQTL3; GK; GLK; HHF3; HK4; HKIV; HXKP; LGLK; MODY2; PNDM1 Synonyms:

Mammalian Cell

Selection:

None

Vector: pLenti-C-mGFP (PS100071)

mGFP Tag:

NM 000162 ACCN: **ORF Size:** 1395 bp

ORF Nucleotide

Sequence:

The ORF insert of this clone is exactly the same as(RC200472).

The molecular sequence of this clone aligns with the gene accession number as a point of OTI Disclaimer: reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeq: NM 000162.2

RefSeq Size: 2741 bp RefSeq ORF: 1398 bp Locus ID: 2645 **UniProt ID:** P35557 Cytogenetics:

Protein Families: Druggable Genome

7p13

Glucokinase (GCK) (NM_000162) Human Tagged ORF Clone Lentiviral Particle - RC200472L2V

Protein Pathways: Amino sugar and nucleotide sugar metabolism, Galactose metabolism, Glycolysis /

Gluconeogenesis, Insulin signaling pathway, Maturity onset diabetes of the young, Metabolic

pathways, Starch and sucrose metabolism, Type II diabetes mellitus

MW: 52.2 kDa

Gene Summary: This gene encodes a member of the hexokinase family of proteins. Hexokinases

phosphorylate glucose to produce glucose-6-phosphate, the first step in most glucose metabolism pathways. In contrast to other forms of hexokinase, this enzyme is not inhibited by its product glucose-6-phosphate but remains active while glucose is abundant. The use of multiple promoters and alternative splicing of this gene result in distinct protein isoforms that exhibit tissue-specific expression in the pancreas and liver. In the pancreas, this enzyme plays a role in glucose-stimulated insulin secretion, while in the liver, this enzyme is important in glucose uptake and conversion to glycogen. Mutations in this gene that alter enzyme activity have been associated with multiple types of diabetes and hyperinsulinemic

hypoglycemia. [provided by RefSeq, Aug 2017]