

Product datasheet for MR202337L4V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

Atp5o (NM_138597) Mouse Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: Atp5o (NM_138597) Mouse Tagged ORF Clone Lentiviral Particle

Symbol: Atp5o

Synonyms: ATPO; D12Wsu28e; OSCP

Mammalian Cell

Selection:

Puromycin

Vector: pLenti-C-mGFP-P2A-Puro (PS100093)

Tag: mGFP

ACCN: NM_138597

ORF Size: 642 bp

ORF Nucleotide

OTI Disclaimer:

The OD

Sequence:

The ORF insert of this clone is exactly the same as(MR202337).

The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This

clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeg: NM 138597.2, NP 613063.1

 RefSeq Size:
 772 bp

 RefSeq ORF:
 642 bp

 Locus ID:
 28080

 UniProt ID:
 Q9DB20

Cytogenetics: 16 C4

Gene Summary:

Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements.[UniProtKB/Swiss-Prot Function]