

Product datasheet for KN508617

Kcnb1 Mouse Gene Knockout Kit (CRISPR)

Product data:

Product Type:	Knockout Kits (CRISPR)
Format:	2 gRNA vectors, 1 linear donor
Donor DNA:	EF1a-GFP-P2A-Puro
Symbol:	Kcnb1
Locus ID:	16500

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2022 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US

Components:

KN508617G1, Kcnb1 gRNA vector 1 in pCas-Guide CRISPR vector (GE100002) KN508617G2, Kcnb1 gRNA vector 2 in pCas-Guide CRISPR vector (GE100002) KN508617D, Linear donor DNA containing LoxP-EF1A-tGFP-P2A-Puro-LoxP: The sequence below is cassette sequence only. The linear donor DNA also contains proprietary target sequence. LoxP-EF1A-tGFP-P2A-Puro-LoxP (2739 bp) ATAACTTCGT ATAATGTATG CTATACGAAG TTAT CGTGAG GCTCCGGTGC CCGTCAGTGG GCAGAGCGCA CATCGCCCAC AGTCCCCGAG AAGTTGGGGG GAGGGGTCGG CAATTGAACC GGTGCCTAGA GAAGGTGGCG CGGGGTAAAC TGGGAAAGTG ATGTCGTGTA CTGGCTCCGC CTTTTTCCCG AGGGTGGGGG AGAACCGTAT ATAAGTGCAG TAGTCGCCGT GAACGTTCTT TTTCGCAACG GGTTTGCCGC CAGAACACAG GTAAGTGCCG TGTGTGGTTC CCGCGGGCCT GGCCTCTTA CGGGTTATGG CCCTTGCGTG CCTTGAATTA CTTCCACCTG GCTGCAGTAC GTGATTCTTG ATCCCGAGCT TCGGGTTGGA AGTGGGTGGG AGAGTTCGAG GCCTTGCGCT TAAGGAGCCC CTTCGCCTCG TGCTTGAGTT GAGGCCTGGC CTGGGCGCTG GGGCCGCCGC GTGCGAATCT GGTGGCACCT TCGCGCCTGT CTCGCTGCTT TCGATAAGTC TCTAGCCATT TAAAATTTTT GATGACCTGC TGCGACGCTT TTTTTCTGGC AAGATAGTCT TGTAAATGCG GGCCAAGATC TGCACACTGG TATTTCGGTT TTTGGGGCCG CGGGCGGCGA CGGGGCCCGT GCGTCCCAGC GCACATGTTC GGCGAGGCGG GGCCTGCGAG CGCGGCCACC GAGAATCGGA CGGGGGTAGT CTCAAGCTGG CCGGCCTGCT CTGGTGCCTG GCCTCGCGCC GCCGTGTATC GCCCCGCCCT GGGCGGCAAG GCTGGCCCGG TCGGCACCAG TTGCGTGAGC GGAAAGATGG CCGCTTCCCG GCCCTGCTGC AGGGAGCTCA AAATGGAGGA CGCGGCGCTC GGGAGAGCGG GCGGGTGAGT CACCCACACA AAGGAAAAGG GCCTTTCCGT CCTCAGCCGT CGCTTCATGT GACTCCACGG AGTACCGGGC GCCGTCCAGG CACCTCGATT AGTTCTCGAG CTTTTGGAGT ACGTCGTCTT TAGGTTGGGG GGAGGGGTTT TATGCGATGG AGTTTCCCCA CACTGAGTGG GTGGAGACTG AAGTTAGGCC AGCTTGGCAC TTGATGTAAT TCTCCTTGGA ATTTGCCCTT TTTGAGTTTG GATCTTGGTT CATTCTCAAG CCTCAGACAG TGGTTCAAAG TTTTTTTCTT CCATTTCAGG TGTCGTGAAT GGAGAGCGAC GAGAGCGGCC TGCCCGCCAT GGAGATCGAG TGCCGCATCA CCGGCACCCT GAACGGCGTG GAGTTCGAGC TGGTGGGCGG CGGAGAGGGC ACCCCCGAGC AGGGCCGCAT GACCAACAAG ATGAAGAGCA CCAAAGGCGC CCTGACCTTC AGCCCCTACC TGCTGAGCCA CGTGATGGGC TACGGCTTCT ACCACTTCGG CACCTACCCC AGCGGCTACG AGAACCCCTT CCTGCACGCC ATCAACAACG GCGGCTACAC CAACACCCGC ATCGAGAAGT ACGAGGACGG CGGCGTGCTG CACGTGAGCT TCAGCTACCG CTACGAGGCC GGCCGCGTGA TCGGCGACTT CAAGGTGATG GGCACCGGCT TCCCCGAGGA CAGCGTGATC TTCACCGACA AGATCATCCG CAGCAACGCC ACCGTGGAGC ACCTGCACCC CATGGGCGAT AACGATCTGG ATGGCAGCTT CACCCGCACC TTCAGCCTGC GCGACGGCGG CTACTACAGC TCCGTGGTGG ACAGCCACAT GCACTTCAAG AGCGCCATCC ACCCCAGCAT CCTGCAGAAC GGGGGCCCCA TGTTCGCCTT CCGCCGCGTG GAGGAGGATC ACAGCAACAC CGAGCTGGGC ATCGTGGAGT ACCAGCACGC CTTCAAGACC CCGGATGCAG ATGCCGGTGA AGAAAGAGGA AGCGGAGCTA CTAACTTCAG CCTGCTGAAG CAGGCTGGAG ACGTGGAGGA GAACCCTGGA CCTATGACCG AGTACAAGCC CACGGTGCGC CTCGCCACCC GCGACGACGT CCCCAGGGCC GTACGCACCC TCGCCGCCGC GTTCGCCGAC TACCCCGCCA CGCGCCACAC CGTCGATCCG GACCGCCACA TCGAGCGGGT CACCGAGCTG CAAGAACTCT TCCTCACGCG CGTCGGGCTC GACATCGGCA AGGTGTGGGT CGCGGACGAC GGCGCCGCGG TGGCGGTCTG GACCACGCCG GAGAGCGTCG AAGCGGGGGGC GGTGTTCGCC GAGATCGGCC CGCGCATGGC CGAGTTGAGC GGTTCCCGGC TGGCCGCGCA GCAACAGATG GAAGGCCTCC TGGCGCCGCA CCGGCCCAAG GAGCCCGCGT GGTTCCTGGC CACCGTCGGC GTCTCGCCCG ACCACCAGGG CAAGGGTCTG GGCAGCGCCG TCGTGCTCCC CGGAGTGGAG GCGGCCGAGC GCGCCGGGGT GCCCGCCTTC CTGGAGACCT CCGCGCCCCG CAACCTCCCC TTCTACGAGC GGCTCGGCTT CACCGTCACC GCCGACGTCG AGGTGCCCGA AGGACCGCGC ACCTGGTGCA TGACCCGCAA GCCCGGTGCC TGAAACTTGT TTATTGCAGC TTATAATGGT TACAAATAAA GCAATAGCAT CACAAATTTC ACAAATAAAG CATTTTTTC ACTGCATTCT AGTTGTGGTT TGTCCAAACT CATCAATGTA TCTTAATAAC TTCGTATAAT GTATGCTATA CGAAGTTAT LoxP LoxP

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2022 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US

	Scrigene Kcnb1 Mouse Gene Knockout Kit (CRISPR) – KN508617	
Disclaimer:	These products are manufactured and supplied by OriGene under license from ERS. The kit is designed based on the best knowledge of CRISPR technology. The system has been functionally validated for knocking-in the cassette downstream the native promoter. The efficiency of the knock-out varies due to the nature of the biology and the complexity of the experimental process.	
RefSeq:	<u>NM 008420</u>	
UniProt ID:	<u>Q03717</u>	
Synonyms:	Kcr1-1; Kv2.1; Shab	
Summary:	Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain, but also in the pancreas and cardiovascular system. Contributes to the regulation of the action potential (AP) repolarization, duration and frequency of repetitive AP firing in neurons, muscle cells and endocrine cells and plays a role in homeostatic attenuation of electrical excitability throughout the brain (PubMed:14684365, PubMed:19383458, PubMed:24494598). Plays also a role in the regulation of exocytosis independently of its electrical function (By similarity). Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Homotetrameric channels mediate a delayed- rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization (PubMed:22056818). Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB2; channel properties depend on the type of alpha subunits that are part of the channel (By similarity). Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNF1, KCNG1, KCNG3, KCNG4, KCNH1, KCNH2, KCNS1, KCNS2, KCNS3 and KCNV1, creating a functionally diverse range of channel complexes (By similarity). Heterotetrameric channel activity formed with KCNS3 show increased current amplitude with the threshold for action potential activation shifted towards more negative values in hypoxic-treated pulmonary artery smooth muscle cells (By similarity). Channel properties are also modulated by cytoplasmic ancillary beta subunits, such as AMIGO1, KCNE1, KCNE2 and KCNE3, slowing activation and inactivation rate of the delayed rectifier potassium channels (PubMed:22056818). In vivo, membranes probably	

similarity). Plays a role in the induction of long-term potentiation (LTP) of neuron excitability in the CA3 layer of the hippocampus (PubMed:24494598). Contributes to the regulation of the

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2022 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US

GRIGENE Kcnb1 Mouse Gene Knockout Kit (CRISPR) – KN508617

glucose-induced amplitude and duration of action potentials in pancreatic beta-cells, hence limiting calcium influx and insulin secretion (PubMed:12270920, PubMed:17767909, PubMed:19383458, PubMed:23161216). Plays a role in the regulation of resting membrane potential and contraction in hypoxia-treated pulmonary artery smooth muscle cells (By similarity). May contribute to the regulation of the duration of both the action potential of cardiomyocytes and the heart ventricular repolarization QT interval (PubMed:10506487, PubMed:14684365). Contributes to the pronounced pro-apoptotic potassium current surge during neuronal apoptotic cell death in response to oxidative injury (By similarity). May confer neuroprotection in response to hypoxia/ischemic insults by suppressing pyramidal neurons hyperexcitability in hippocampal and cortical regions (By similarity). Promotes trafficking of KCNG3, KCNH1 and KCNH2 to the cell surface membrane, presumably by forming heterotetrameric channels with these subunits (By similarity). Plays a role in

Product images:

This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2022 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US