

Product datasheet for KN303573

Cnr1 Mouse Gene Knockout Kit (CRISPR)

Product data:

Product Type: Knockout Kits (CRISPR)

Format: 2 gRNA vectors, 1 GFP-puro donor, 1 scramble control

Donor DNA: GFP-puro

Symbol: Cnr1 Locus ID: 12801

Components: KN303573G1, Cnr1 gRNA vector 1 in pCas-Guide CRISPR vector (GE100002), Target Sequence:

TGTCATTTGAGCCCACGTAG

KN303573G2, Cnr1 gRNA vector 2 in pCas-Guide CRISPR vector (GE100002), Target Sequence:

TACGGAAGGTGGTATCTGCA

KN303573D, donor DNA containing left and right homologous arms and GFP-puro functional

cassette.

GE100003, scramble sequence in pCas-Guide vector

Disclaimer: These products are manufactured and supplied by OriGene under license from ERS. The kit is

designed based on the best knowledge of CRISPR technology. The system has been functionally validated for knocking-in the cassette downstream the native promoter. The efficiency of the knock-out varies due to the nature of the biology and the complexity of the

experimental process.

RefSeq: NM 007726, NM 001355020, NM 001355021, NM 001365881

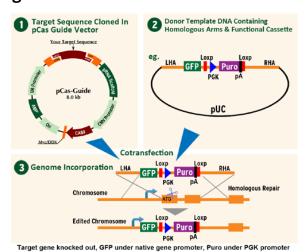
UniProt ID: P47746

Synonyms: CB-R; CB1; CB1R

OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200

CN: techsupport@origene.cn

Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com



Summary:

G-protein coupled receptor for cannabinoids, including endocannabinoids (eCBs), such as Narachidonoylethanolamide (also called anandamide or AEA) and 2-arachidonoylglycerol (2-AG) (PubMed:9888857, PubMed:22388959). Mediates many cannabinoid-induced effects, acting, among others, on food intake, memory loss, gastrointestinal motility, catalepsy, ambulatory activity, anxiety, chronic pain (PubMed:9888857, PubMed:27828947). Signaling typically involves reduction in cyclic AMP (PubMed:8832654, PubMed:27828947). Signaling typically involves reduction in cyclic AMP (By similarity). In the hypothalamus, may have a dual effect on mitochondrial respiration depending upon the agonist dose and possibly upon the cell type. Increases respiration at low doses, while decreases respiration at high doses (PubMed:25707796, PubMed:27828947). At high doses, CNR1 signal transduction involves Gprotein alpha-i protein activation and subsequent inhibition of mitochondrial soluble adenylate cyclase, decrease in cyclic AMP concentration, inhibition of protein kinase A (PKA)dependent phosphorylation of specific subunits of the mitochondrial electron transport system, including NDUFS2 (PubMed:27828947). In the hypothalamus, inhibits leptin-induced reactive oxygen species (ROS) formation and mediates cannabinoid-induced increase in SREBF1 and FASN gene expression (PubMed:25869131). In response to cannabinoids, drives the release of orexigenic beta-endorphin, but not that of melanocyte-stimulating hormone alpha/alpha-MSH, from hypothalamic POMC neurons, hence promoting food intake (PubMed:25707796). In the hippocampus, regulates cellular respiration and energy production in response to cannabinoids. Involved in cannabinoid-dependent depolarizationinduced suppression of inhibition (DSI), a process in which depolarization of CA1 postsynaptic pyramidal neurons mobilizes eCBs, which retrogradely activate presynaptic CB1 receptors, transiently decreasing GABAergic inhibitory neurotransmission (PubMed:22388959). Also reduces excitatory synaptic transmission (PubMed:27828947). In superior cervical ganglions and cerebral vascular smooth muscle cells, inhibits voltage-gated Ca(2+) channels in a constitutive, as well as agonist-dependent manner (By similarity). In cerebral vascular smooth muscle cells, cannabinoid-induced inhibition of voltage-gated Ca(2+) channels leads to vasodilation and decreased vascular tone (By similarity). Induces leptin production in adipocytes and reduces LRP2-mediated leptin clearance in the kidney, hence participating in hyperleptinemia (PubMed:22841573). In adipose tissue, CNR1 signaling leads to increased expression of SREBF1, ACACA and FASN genes (PubMed:15864349). In the liver, activation by endocannabinoids leads to increased de novo lipogenesis and reduced fatty acid catabolism, associated with increased expression of SREBF1/SREBP-1, GCK, ACACA, ACACB and FASN genes (PubMed:15864349, PubMed:21987372). May also affect de novo cholesterol synthesis and HDL-cholesteryl ether uptake (PubMed:21987372). Peripherally modulates energy metabolism. In high carbohydrate diet-induced obesity, may decrease the expression of mitochondrial dihydrolipoyl dehydrogenase/DLD in striated muscles, as well as that of selected glucose/ pyruvate metabolic enzymes, hence affecting energy expenditure through mitochondrial metabolism (PubMed:26671069). In response to cannabinoid anandamide, elicits a proinflammatory response in macrophages, which involves NLRP3 inflammasome activation and IL1B and IL18 secretion. In macrophages infiltrating pancreatic islets, this process may participate in the progression of type-2 diabetes and associated loss of pancreatic beta-cells (PubMed:23955712).[UniProtKB/Swiss-Prot Function]

Product images:

