Product datasheet for KN303042

OriGene Technologies, Inc.
9620 Medical Center Drive, Ste 200
Rockville, MD 20850, US
Phone: +1-888-267-4436
https://www.origene.com techsupport@origene.com
EU: info-de@origene.com
CN: techsupport@origene.cn

Cdk5 Mouse Gene Knockout Kit (CRISPR)

Product data:

Product Type:

Format:

Donor DNA:
Symbol:
Locus ID:
Components:

Knockout Kits (CRISPR)

2 gRNA vectors, 1 GFP-puro donor, 1 scramble control
GFP-puro
Cdk5
12568
KN303042G1, Cdk5 gRNA vector 1 in pCas-Guide CRISPR vector (GE100002), Target Sequence: GACCTTGCAGGAACATCTCG
KN303042G2, Cdk5 gRNA vector 2 in pCas-Guide CRISPR vector (GE100002), Target Sequence: CGAGAAACTGGAGAAGATTG
KN303042D, donor DNA containing left and right homologous arms and GFP-puro functional cassette.
Homologous arm and GFP-puro sequences:
pUC vector backbone in gray; Left arm sequence in blue; GFP-puro in green; Right arm in violet
AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAGCG GTTAGCTCCT TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC ATGGTTATGG CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG ATGCTTTTCT GTGACTGGTG AGTACTCAAC CAAGTCATTC TGAGAATAGT GTATGCGGCG ACCGAGTTGC TCTTGCCCGG CGTCAATACG GGATAATACC GCGCCACATA GCAGAACTTT AAAAGTGCTC ATCATTGGAA AACGTTCTTC GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTTCGATGT AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTTAC TTTCACCAGC GTTTCTGGGT GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT AAGGGCGACA CGGAAATGTT GAATACTCAT ACTCTTCCTT TTTCAATATT ATTGAAGCAT TTATCAGGGT TATTGTCTCA TGAGCGGATA CATATTTGAA TGTATTTAGA AAAATAAACA AATAGGGGTT CCGCGCACAT TTCCCCGAAA AGTGCCACCT GACGTCTAAG AAACCATTAT TATCATGACA TTAACCTATA AAAATAGGCG TATCACGAGG CCCTTTCGGG TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG TTGACGGTCA CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATAAAAT TGTAAACGTT AATATTTTGT TAAAATTCGC GTTAAATTTT TGTTAAATCA GCTCATTTTT TAACCAATAG GCCGAAATCG GCAAAATCCC TTATAAATCA AAAGAATAGC CCGAGATAGG GTTGAGTGTT GTTCCAGTTT GGAACAAGAG TCCACTATTA AAGAACGTGG ACTCCAACGT CAAAGGGCGA AAAACCGTCT ATCAGGGCGA TGGCCCACTA CGTGAACCAT CACCCAAATC AAGTTTTTTG GGGTCGAGGT GCCGTAAAGC ACTAAATCGG AACCCTAAAG GGAGCCCCCG ATTTAGAGCT TGACGGGGAA AGCCGGCGAA CGTGGCGAGA AAGGAAGGGA AGAAAGCGAA AGGAGCGGGC GCTAGGGCGC TGGCAAGTGT AGCGGTCACG CTGCGCGTAA CCACCACACC CGCCGCGCTT AATGCGCCGC TACAGGGCGC GTACTATGGT TGCTTTGACG TATGCGGTGT GAAATACCGC ACAGATGCGT AAGGAGAAAA TACCGCATCA GGCGCCATTC GCCATTCAGG CTGCGCAACT GTTGGGAAGG GCGATCGGTG CGGGCCTCTT CGCTATTACG CCAGCTGGCG AAAGGGGGAT GTGCTGCAAG GCGATTAAGT TGGGTAACGC CAGGGTTTTC CCAGTCACGA CGTTGTAAAA CGACGGCCAG TGAATTGGAG GCTACAGTCA GTGGAGAGGA CTTTCACAGG CTGTCGCCGT GCTCATTTGA

TAACTGCCCG TTATTCATGC GACACAGAAT CATTCCCCAA TCAGTCCTGG GGTCACCAGG TGGCCTAGGA GAGGTGAAAA CTAGTGCTGA AGCTGTCAGG AGGTCGCTGG TGACTCAAAA CACCCAACCA GGTCAGAGCC GGGCCAACAG CGCTCGGGAT CTAGGCCGTC AAACGCAAAC TTCAAGCAGA GAGCACCCCA CCCCCACCCT CACTGTATTC TGGAACGCGT AGTCCCGGAG AGGCCCTTTT CTGGAAGGCT GTGAGCACAG AAAAGGAATA ATAACAAGAG CGGGGCACAC TGGGAGCCTC CGCGCCTTGG CGGAGACGCC CGACACGCGA TGCTTCCTGG GAGTTGAAGT TTAAGGTTTG CCTCCGCGAT GGAAACGAGT CCCTGGAGTT GATCGCTGCA GAGAGCCCGA GCGCAGCCTG TTGGACTTTG TAGTCCGCGT GTCCTCCGCC ACAGGCATTC TTGGGAACTA TGGCTTCCCC GGGACTACAA GTCCCAGATG CCAGTGCGTG GTGAGCAGGT GGGCGGGGCT GGAGCTGTGA GTACCACCTC CTCTGCAACG CCAGGGCCGG GAGTCTTAGA ACCGAGGGCC CGCAGGGGTC CCCGCGGCCG CTGCATCTAG CATGGAGAGC GACGAGAGCG GCCTGCCCGC CATGGAGATC GAGTGCCGCA TCACCGGCAC CCTGAACGGC GTGGAGTTCG AGCTGGTGGG CGGCGGAGAG GGCACCCCCG AGCAGGGCCG CATGACCAAC AAGATGAAGA GCACCAAAGG CGCCCTGACC TTCAGCCCCT ACCTGCTGAG CCACGTGATG GGCTACGGCT TCTACCACTT CGGCACCTAC CCCAGCGGCT ACGAGAACCC CTTCCTGCAC GCCATCAACA ACGGCGGCTA CACCAACACC CGCATCGAGA AGTACGAGGA CGGCGGCGTG CTGCACGTGA GCTTCAGCTA CCGCTACGAG GCCGGCCGCG TGATCGGCGA CTTCAAGGTG ATGGGCACCG GCTTCCCCGA GGACAGCGTG ATCTTCACCG ACAAGATCAT CCGCAGCAAC GCCACCGTGG AGCACCTGCA CCCCATGGGC GATAACGATC TGGATGGCAG CTTCACCCGC ACCTTCAGCC TGCGCGACGG CGGCTACTAC AGCTCCGTGG TGGACAGCCA CATGCACTTC AAGAGCGCCA TCCACCCCAG CATCCTGCAG AACGGGGGCC CCATGTTCGC CTTCCGCCGC GTGGAGGAGG ATCACAGCAA CACCGAGCTG GGCATCGTGG AGTACCAGCA CGCCTTCAAG ACCCCGGATG CAGATGCCGG TGAAGAAAGA GTTTAAGAAT TCCGATCATA TTCAATAACC CTTAATATAA CTTCGTATAA TGTATGCTAT ACGAAGTTAT TAGGTCTGAA GAGGAGTTTA CGTCCAGCCA AGCTTAGGAT CTCGACCTCG AAATTCTACC GGGTAGGGGA GGCGCTTTTC CCAAGGCAGT CTGGAGCATG CGCTTTAGCA GCCCCGCTGG GCACTTGGCG CTACACAAGT GGCCTCTGGC CTCGCACACA TTCCACATCC ACCGGTAGGC GCCAACCGAC TCCGTTCTTT GGTGGCCCCT TCGCGCCACC TTCTACTCCT CCCCTAGTCA GGAAGTTCCC CCCCGCCCCG CAGCTCGCGT CGTGCAGGAC GTGACAAATG GAAGTAGCAC GTCTCACTAG TCTCGTGCAG ATGGACAGCA CCGCTGAGCA ATGGAAGCGG GTAGGCCTTT GGGGCAGCGG CCAATAGCAG CTTTGCTCCT TCGCTTTCTG GGCTCAGAGG CTGGGAAGGG GTGGGTCCGG GGGCGGGCTC AGGGGCGGGC TCAGGGGCGG GGCGGGCGCC CGAAGGTCCT CCGGAGGCCC GGCATTCTGC ACGCTTCAAA AGCGCACGTC TGCCGCGCTG TTCTCCTCTT CCTCATCTCC GGGCCTTTCG ACCTGCATCC ATCTAGATCT CGAGCAGCTG AAGCTTACCA TGACCGAGTA CAAGCCCACG GTGCGCCTCG CCACCCGCGA CGACGTCCCC AGGGCCGTAC GCACCCTCGC CGCCGCGTTC GCCGACTACC CCGCCACGCG CCACACCGTC GATCCGGACC GCCACATCGA GCGGGTCACC GAGCTGCAAG AACTCTTCCT CACGCGCGTC GGGCTCGACA TCGGCAAGGT GTGGGTCGCG GACGACGGCG CCGCGGTGGC GGTCTGGACC ACGCCGGAGA GCGTCGAAGC GGGGGCGGTG TTCGCCGAGA TCGGCCCGCG CATGGCCGAG TTGAGCGGTT CCCGGCTGGC CGCGCAGCAA CAGATGGAAG GCCTCCTGGC GCCGCACCGG CCCAAGGAGC CCGCGTGGTT CCTGGCCACC GTCGGCGTCT CGCCCGACCA CCAGGGCAAG GGTCTGGGCA GCGCCGTCGT GCTCCCCGGA GTGGAGGCGG CCGAGCGCGC CGGGGTGCCC GCCTTCCTGG AGACCTCCGC GCCCCACAAC CTCCCCTTCT ACGAGCGGCT CGGCTTCACC GTCACCGCCG ACGTCGAGGT GCCCGAAGGA CCGCGCACCT GGTGCATGAC CCGCAAGCCC GGTGCCTGAC GCCCGCCCCA CGACCCGCAG CGCCCGACCG AAAGGAGCGC ACGACCCCAT GCATCGATGA TATCAGATCC CCGGGATGCA GAAATTGATG ATCTATTAAA CAATAAAGAT GTCCACTAAA ATGGAAGTTT TTCCTGTCAT ACTTTGTTAA GAAGGGTGAG AACAGAGTAC CTACATTTTG AATGGAAGGA TTGGAGCTAC GGGGGTGGGG GTGGGGTGGG ATTAGATAAA TGCCTGCTCT TTACTGAAGG CTCTTTACTA TTGCTTTATG ATAATGTTTC ATAGTTGGAT ATCATAATTT AAACAAGCAA AACCAAATTA AGGGCCAGCT CATTCCTCCC actcatgatc tatagatcta tagatctctc gTgggatcat tgtttttctc TTGattccca ctitgigat CTAAGTACTG TGGTTTCCAA ATGTGTCAGT TTCATAGCCT GAAGAACGAG ATCAGCAGCC TCTGTTCCAC ATACACTTCA TTCTCAGTAT TGTTTTGCCA AGTTCTAATT CCATCAGAAG CTGGTCGAGA TCCGGAACCC tTaATATAAC TTCGTATAAT GTATGCTATA CGAAGTTATT AGGTCCCTCG AAGAGGTTCA CTAGGCGCGC CGTCCCAGCT CCCTTACCGT CAGCTATACC GGCAGGCTCC GACCTCAGCA CTAGCCAAAA GCCCTGGCCG CTGAGTCCCT CACCCAGTGC AGAAACGAAC CCTGTGTTAG CATCTGCGGC AAACTCTTGC TCTTAGCCTT AGCAATCTCT GTGGACCAGC CTTCCTAACC GCGGCACTTC CTGCATTTCT CGTCCCTAGC CCCAGCATCA CTTGCAAACC TCACCTGGGA TTCCTGCTTC AATTCATTGC AGAACCTCCA ACCTTAACAT TTTTGCAGGC CTTCGTTCCT CCCCTAGGTG ACTCCTCGAT ACCCCCCGAC CCTACCCCCG ACCCGGGAGT TTATGGCAGA TTCTCCCTGC AGCTGAAGCC TTGAGTTATT TTAGGCACCT TCTCCTTGGC ATCCTCACTC ACAAAACTAC

Disclaimer:

RefSeq:
UniProt ID:
Synonyms:
Summary:

TCCACATCTG GCCTTTGCCC TGAGAACTTA CCCTTACACA CTAAGATATT GAGAAGGATC CTCTCCCTCA CCCCCAACCT TCCTCTAGGC ACCTATGGAA CTGTGTTCAA GGCTAAAAAC CGGGAAACTC ATGAGATTGT GGCTCTGAAG CGTGTCAGGC TGGATGATGA CGATGAGGTA GTCACTCTCG CCGGTTGGAC TTTAGATCAG AAGGGATCTT GCTGCCGCCC GAAAGAGGAA GGGCTGGAAG AGGAAGGAGC TTGGCGTAAT CATGGTCATA GCTGTTTCCT GTGTGAAATT GTTATCCGCT CACAATTCCA CACAACATAC GAGCCGGAAG CATAAAGTGT AAAGCCTGGG GTGCCTAATG AGTGAGCTAA CTCACATTAA TTGCGTTGCG CTCACTGCCC GCTTTCCAGT CGGGAAACCT GTCGTGCCAG CTGCATTAAT GAATCGGCCA ACGCGCGGGG AGAGGCGGTT TGCGTATTGG GCGCTCTTCC GCTTCCTCGC TCACTGACTC GCTGCGCTCG GTCGTTCGGC TGCGGCGAGC GGTATCAGCT CACTCAAAGG CGGTAATACG GTTATCCACA GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAAG GCCAGCAAAA GGCCAGGAAC CGTAAAAAGG CCGCGTTGCT GGCGTTTTTC CATAGGCTCC GCCCCCCTGA CGAGCATCAC AAAAATCGAC GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG TTTCCCCCTG GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA CCCTGCCGCT TACCGGATAC CTGTCCGCCT TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC ATAGCTCACG CTGTAGGTAT CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG TGCACGAACC CCCCGTTCAG CCCGACCGCT GCGCCTTATC CGGTAACTAT CGTCTTGAGT CCAACCCGGT AAGACACGAC TTATCGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGAAC AGTATTTGGT ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC TTGATCCGGC AAACAAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA AGCAGCAGAT TACGCGCAGA AAAAAAGGAT CTCAAGAAGA TCCTTTGATC TTTTCTACGG GGTCTGACGC TCAGTGGAAC GAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC CTTTTAAATT AAAAATGAAG TTTTAAATCA atctaang ta tatatgagta aactiggtct gacagttacc aitgctiant cagtgaggca cctatctcag CGATCTGTCT ATTTCGTTCA TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAACTACGA TACGGGAGGG CTTACCATCT GGCCCCAGTG CTGCAATGAT ACCGCGAGAA CCACGCTCAC CGGCTCCAGA TTTATCAGCA ATAAACCAGC CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC CTGCAACTTT ATCCGCCTCC ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA GTTCGCCAGT TAATAGTTTG CGCAACGTTG TTGCCATTGC TACAGGCATC GTGGTGTCAC GCTCGTCGTT TGGTATGGCT TCATTCAGCT CCGGTTCCCA ACGATC
GE100003, scramble sequence in pCas-Guide vector
These products are manufactured and supplied by OriGene under license from ERS. The kit is designed based on the best knowledge of CRISPR technology. The system has been functionally validated for knocking-in the cassette downstream the native promoter. The efficiency of the knock-out varies due to the nature of the biology and the complexity of the experimental process.

NM 007668

P49615
AW048668; Crk6
Proline-directed serine/threonine-protein kinase essential for neuronal cell cycle arrest and differentiation and may be involved in apoptotic cell death in neuronal diseases by triggering abortive cell cycle re-entry. Interacts with D1 and D3-type G1 cyclins. Phosphorylates SRC, NOS3, VIM/vimentin, p35/CDK5R1, MEF2A, SIPA1L1, SH3GLB1, PXN, PAK1, MCAM/MUC18, SEPT5, SYN1, DNM1, AMPH, SYN11, CDK16, RAC1, RHOA, CDC42, TONEBP/NFAT5, MAPT/TAU, MAP1B, histone H1, p53/TP53, HDAC1, APEX1, PTK2/FAK1, huntingtin/HTT, ATM, MAP2, NEFH and NEFM. Regulates several neuronal development and physiological processes including neuronal survival, migration and differentiation, axonal and neurite growth, synaptogenesis, oligodendrocyte differentiation, synaptic plasticity and neurotransmission, by phosphorylating key proteins. Activated by interaction with CDK5R1 (p35) and CDK5R2 (p39), especially in post-mitotic neurons, and promotes CDK5R1 (p35) expression in an
autostimulation loop. Phosphorylates many downstream substrates such as Rho and Ras family small GTPases (e.g. PAK1, RAC1, RHOA, CDC42) or microtubule-binding proteins (e.g. MAPT/TAU, MAP2, MAP1B), and modulates actin dynamics to regulate neurite growth and/or spine morphogenesis. Phosphorylates also exocytosis associated proteins such as MCAM/MUC18, SEPT5, SYN1, and CDK16/PCTAIRE1 as well as endocytosis associated proteins such as DNM1, AMPH and SYNJ1 at synaptic terminals. In the mature central nervous system (CNS), regulates neurotransmitter movements by phosphorylating substrates associated with neurotransmitter release and synapse plasticity; synaptic vesicle exocytosis, vesicles fusion with the presynaptic membrane, and endocytosis. Promotes cell survival by activating antiapoptotic proteins BCL2 and STAT3, and negatively regulating of JNK3/MAPK10 activity. Phosphorylation of p53/TP53 in response to genotoxic and oxidative stresses enhances its stabilization by preventing ubiquitin ligase-mediated proteasomal degradation, and induces transactivation of p53/TP53 target genes, thus regulating apoptosis. Phosphorylation of p35/CDK5R1 enhances its stabilization by preventing calpain-mediated proteolysis producing p25/CDK5R1 and avoiding ubiquitin ligase-mediated proteasomal degradation. During aberrant cell-cycle activity and DNA damage, p25/CDK5 activity elicits cell-cycle activity and double-strand DNA breaks that precedes neuronal death by deregulating HDAC1. DNA damage triggered phosphorylation of huntingtin/HTT in nuclei of neurons protects neurons against polyglutamine expansion as well as DNA damage mediated toxicity. Phosphorylation of PXN reduces its interaction with PTK2/FAK1 in matrix-cell focal adhesions (MCFA) during oligodendrocytes (OLs) differentiation. Negative regulator of Wnt/beta-catenin signaling pathway. Activator of the GAIT (IFN-gamma-activated inhibitor of translation) pathway, which suppresses expression of a post-transcriptional regulon of proinflammatory genes in myeloid cells; phosphorylates the linker domain of glutamyl-prolyl tRNA synthetase (EPRS) in a IFN-gamma-dependent manner, the initial event in assembly of the GAIT complex. Phosphorylation of SH3GLB1 is required for autophagy induction in starved neurons. Phosphorylation of TONEBP/NFAT5 in response to osmotic stress mediates its rapid nuclear localization. MEF2 is inactivated by phosphorylation in nucleus in response to neurotoxin, thus leading to neuronal apoptosis. APEX1 AP-endodeoxyribonuclease is repressed by phosphorylation, resulting in accumulation of DNA damage and contributing to neuronal death. NOS3 phosphorylation down regulates NOS3-derived nitrite (NO) levels. SRC phosphorylation mediates its ubiquitin-dependent degradation and thus leads to cytoskeletal reorganization. May regulate endothelial cell migration and angiogenesis via the modulation of lamellipodia formation. Involved in dendritic spine morphogenesis by mediating the EFNA1-EPHA4 signaling. The complex p35/CDK5 participates in the regulation of the circadian clock by modul

Product images:

This product is to be used for laboratory only. Not for diagnostic or therapeutic use.

