

Mouse FGF basic Immunoassay

Catalog Number: EA800156

For the quantitative determination of mouse Basic fibroblast growth factor (FGF basic) concentrations in cell culture supernate, serum, and plasma.

For research use only. Not for use in diagnostic procedures.

MANUFACTURED AND DISTRIBUTED BY:

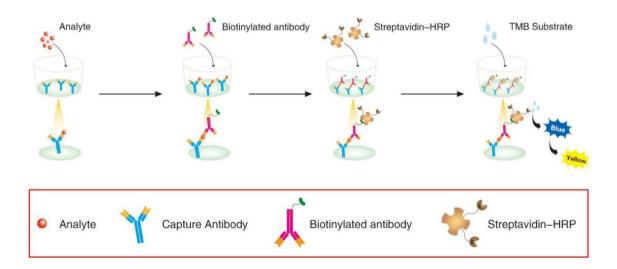
OriGene Technologies,Inc.

9620 Medical Center Drive Suite 200 Rockville, MD 20850,USA

Tel: 1-301-340-3188 Fax: 301-340-9254 Mail: techsupport@origene.com Web: www.origene.com

TABLE OF CONTENTS

SECTION	PAGE	
BACKGROUND		1
PRINCIPLE OF THE ASSAY		1
TECHNICAL HINTS AND LIMITATIONS)	2
PRECAUTIONS		2
KIT COMPONENTS& STORAGE CONDI	TIONS	3
OTHER SUPPLIES REQUIRED BUT NOT	Γ SUPPLIED	2
SPECIMEN COLLECTION & STORAGE.		2
REAGENTS PREPARATION		4
ASSAY PROCEDURE		6
CALCULATION OF RESULTS		6
PERFORMANCE CHARACTERISTICS		
REFERENCES		10


BACKGROUND

Basic fibroblast growth factor, also known as bFGF, FGF2 or FGF- β , is a member of the fibroblast growth factor family. In normal tissue, basic fibroblast growth factor is present in basement membranes and in the subendothelial extracellular matrix of blood vessels. It stays membrane-bound as long as there is no signal peptide. bFGF is a critical component of mouse embryonic stem cell culture medium; the growth factor is necessary for the cells to remain in an undifferentiated state, although the mechanisms by which it does this are poorly defined. It has been demonstrated to induce gremlin expression which in turn is known to inhibit the induction of differentiation by bone morphogenetic proteins..

PRINCIPLE OF THE ASSAY

This assay employs the quantitative sandwich enzyme immunoassay technique. A monoclonal antibody specific for FGF basic has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and any FGF basic present is captured by the coated antibody after incubation. Following extensive washing, a biotin-conjugate antibody specific for FGF basic is added to detect the captured FGF basic protein in sample. For signal development, horseradish peroxidase (HRP)-conjugated Streptavidin is added, followed by tetramethyl-benzidine (TMB) reagent. Following a wash to remove any unbound combination, and enzyme conjugate is added to the wells. Solution containing sulfuric acid is used to stop color development and the color intensity which is proportional to the quantity of bound protein is measurable at 450nm.

Schematic diagram:

TECHNICAL HINTS AND LIMITATIONS

- 1. This ELISA should not be used beyond the expiration data on the kit label.
- 2. To avoid cross-contamination, use a fresh reagent reservoir and pipette tips for each step.
- 3. To ensure accurate results, some details, such as technique, plasticware and water sources should be emphasized.
- 4. A thorough and consistent wash technique is essential for proper assay performance.
- 5. A standard curve should be generated for each set of samples assayed.
- 6. It is recommended that all standards and samples be assayed in duplicate.
- 7. Avoid microbial contamination of reagents and buffers. Buffers containing protein should be made under aseptic conditions and be prepared fresh daily.
- 8. In order to ensure the accuracy of the results, the standard curve should be made every time.

PRECAUTIONS

The Stop Solution suggested for use with this kit is an acid solution. Wear protective gloves, clothing, eye, and face protection. Wash hands thoroughly after handling.

KIT COMPONENTS& STORAGE CONDITIONS

PART	SIZE	STORAGE OF OPENED/ RECONSTITUTED MATERIAL	
Microwell Plate - antibody coated 96-well Microplate (8 wells ×12 strips)	1 plate	Return unused wells to the foil pouch containing the desiccant pack. Reseal along entire edge of the zip-seal. May be stored for up to 1 month at $2-8^{\circ}C^{**}$	
Standard - lyophilized,4000 pg/ml upon reconstitution	2 vials	Aliquot and Store at -20°C** for six months	
Concentrated Biotin-Conjugated antibody (100X) - 120 ul/vial	1 vial	Store at 2-8°C **for six months	
Concentrated Streptavidin-HRP solution(100X) - 120 ul/vial	1 vial	Store at 2-8°C** for six months	
Standard /sample Diluent - 16 ml/vial	1 bottle	Store at 2-8°C** for six months	
Biotin-Conjugate antibody Diluent - 16 ml/vial	1 bottle	Store at 2-8°C** for six months	
Streptavidin-HRP Diluent - 16 ml/vial	1 bottle	Store at 2-8°C** for six months	
Wash Buffer Concentrate (20x) - 30 ml/vial	1 bottle	Store at 2-8°C** for six months	
Substrate Solution - 12 ml/vial	1 bottle	Store at 2-8°C** for six months	
Stop Solution - 12 ml/vial	1 bottle	Store at 2-8°C** for six months	
Plate Cover Seals	4 pieces		

^{**}Provided this is within the expiration date of the kit.

OTHER SUPPLIES REQUIRED BUT NOT SUPPLIED

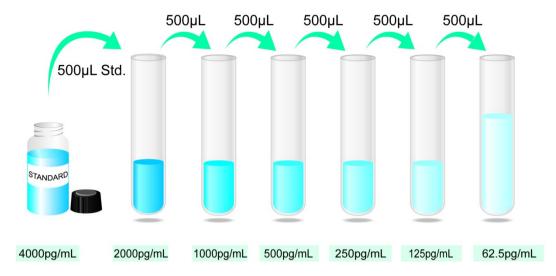
1. Microplate reader capable of measuring absorbance at 450 nm.

- 2. Pipettes and pipette tips.
- 3. Deionized or distilled water.
- 4. Squirt bottle, manifold dispenser, or automated microplate washer.
- 5. 500 mL graduated cylinder.

SPECIMEN COLLECTION & STORAGE

Cell Culture Supernate - Centrifuge cell culture media at $1000 \times g$ to remove debris. Assay immediately or aliquot and store samples at \leq -20 °C. Avoid repeated freezethaw cycles.

Serum - Use a serum separator tube (SST) and allow samples to clot for 2 hours at room temperature or overnight at 2-8°C. Centrifuge approximately for 15 minutes at $1000 \times g$. Assay immediately or aliquot and store samples at \leq -20 °C. Avoid repeated freeze-thaw cycles.


Plasma - Collect plasma using EDTA, heparin, or citrate as an anticoagulant. Centrifuge for 15 minutes at $1000 \times g$ within 30 minutes of collection. Assay immediately or aliquot and store samples at \leq -20 °C. Avoid repeated freeze-thaw cycles.

Note: It is recommended to conduct a pre-test before the formal experiment to determine the dilution ratio

REAGENTS PREPARATION

- **1. Temperature returning** Bring all kit components and specimen to room temperature (20-25°C) before use.
- **2. Wash Buffer** Dilute 30mL of Wash Buffer Concentrate with 570mL of deionized or distilled water to prepare 600mL of Wash Buffer. If crystals have formed in the concentrate Wash Buffer, warm to room temperature and mix gently until the crystals have completely dissolved.
- 3. Standard/Sample Reconstitute the Standard with 1.0mL of Standard/Sample Diluent. This reconstitution produces a stock solution of 4000 pg/mL. Allow the standard to sit for a minimum of 15 minutes with gentle agitation prior to making dilutions. Pipette 500µL of Standard/Sample Diluent into 2000pg/ml tube and the remaining tubes. Use the stock solution of 4000pg/mL to produce a 2-fold dilution series (below). Mix each tube thoroughly and change pipette tips between each transfer. The 4000 pg/mL standard serves as the high standard. The Standard/sample Diluent serves as the zero standard (0 pg/mL).

Preparation of FGF basic standard dilutions

- *If you do not run out of re-melting standard, store it at -20°C. Diluted standard shall not be reused.
- **4. Working solution of Biotin-Conjugate anti-mouse FGF basic antibody:** Make a 1:100 dilution of the concentrated Biotin-Conjugate solution with the Biotin-Conjugate antibody Diluent in a clean plastic tube.
 - *The working solution should be used within one day after dilution.
- **5. Working solution of Streptavidin-HRP**: Make a 1:100 dilution of the concentrated Streptavidin-HRP solution with the Streptavidin-HRP Diluent in a clean plastic tube.
 - *The working solution should be used within one day after dilution.

ASSAY PROCEDURE

Add 100µl standard or samples to each well, incubate 90 minutes,37°C.

Aspirate and wash 4 times

Add 100µl working solution of Biotin-Conjugate anti-mouse FGF basic antibody to each well, incubate 60 minutes, 37°C.

 \square Aspirate and wash 4 times

Add 100µl working solution of Streptavidin-HRP to each well, incubate 30 minutes,37°C.

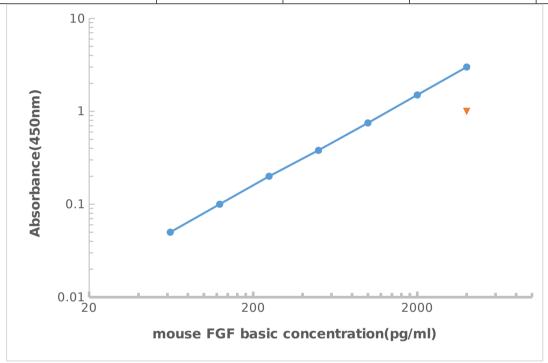
 \square Aspirate and wash 5 times

Add 100µl Substrate solution to each well, incubate 15 minutes,37°C.Protect from light.

 \int

Add 50µl Stop solution to each well. Read at 450nm within 5 minutes.

CALCULATION OF RESULTS


- 1. The standard curve is used to determine the amount of specimens.
- 2. First, average the duplicate readings for each standard, control, and sample. All O.D. values are subtracted by the mean value of blank control before result interpretation.
- 3. Construct a standard curve by reducing the data using computer software capable of generating a four parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph.
- 4. The data may be linearized by plotting the log of the FGF BASIC concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.
- 5. This standard curve is provided for demonstration only. A standard curve should be generated for each set of samples assayed.

Typical data using the FGF basic ELISA

Standard(pg/ ml)	OD.	OD.	Average	Corrected
---------------------	-----	-----	---------	-----------

0	0.046	0.047	0.046	-
62.5	0.192	0.188	0.190	0.143
125	0.222	0.217	0.219	0.173
250	0.329	0.323	0.326	0.280
500	0.523	0.513	0.518	0.471
1000	0.850	0.833	0.841	0.795
2000	1.384	1.356	1.370	1.323
4000	2.254	2.209	2.232	2.185

Representative standard curve for FGF BASIC ELISA.

Performance Characteristics

SENSITIVITY: The minimum detectable dose was 30pg/mL.

SPECIFICITY: This assay recognizes both natural and recombinant mouse FGF basic. The factors listed below were prepared at 100ng/ml in Standard /sample Diluent and assayed for cross-reactivity and no significant cross-reactivity or interference was observed.

Factors assayed for cross-reactivity

Recombinant mouse	Recombinant rat	Recombinant human
FGF-4	FGF-10	FGF R1
FGF-6	FGF-BP	
FGF-8b		
FGF-8c		
FGF-9		
FGF-10		
FGF-15		
FGF-17		
FGF-21		

REPEATABILITY: The coefficient of variation of both intra-assay and inter-assay were less than 10%.

RECOVERY: The recovery of FGF basic spiked to three different levels in four samples throughout the range of the assay in various matrices was evaluated.

Recovery of FGF basic in two matrices

Sample Type	Average % of Expected Range (%)	Range (%)
Citrate plasma	92	83-101
Cell culture supernatants	94	82-104

LINEARITY: To assess the linearity of the assay, three samples were spiked with

high concentrations of FGF basic in various matrices and diluted with the appropriate Sample Diluent to produce samples with values within the dynamic range of the assay. (The plasma samples were initially diluted 1:1)

Dilution ratio	Recovery (%)	Citrate plasma	Cell culture supernatants
1.2	Average% of Expected	94	97
1:2	Range (%)	86-102	85-106
1:4	Average% of Expected	92	103
	Range (%)	87-101	91-109
1.0	Average% of Expected	95	105
1:8	Range (%)	87-104	93-114
1:16	Average% of Expected	93	104
	Range (%)	85-102	95-116

REFERENCES

- 1. Mohammadi, M. et al. (2005) Cytokine Growth Factor Rev. 16:107.
- 2. Presta, M. et al. (2005) Cytokine Growth Factor Rev. 16:159.
- 3. Reuss, B. et al. (2003) Cell Tissue Res. 313:139.
- 4. Su, N. et al. (2008) Front. Biosci. 13:2842.
- 5. Turner, N. and Grose, R. (2010) Nat. Rev. Cancer 10:116.
- 6. Hebert, J.M. et al. (1990) Dev. Biol. 138:454.
- 7. Shimasaki, S. et al. (1988) Biochem. Biophys. Res. Commun. 157:256. 8. Nickel,
- W. (2011) Traffic 12:799.
- 9. Ebert, A.D. et al. (2010) Traffic 11:813.
- 10. Kardami, E. et al. (2004) Cardiovasc. Res. 63:458