Human FGF2 ELISA Kit

Catalog Number: EA102180

Assay Principle

The OriGene Human FGF2 Pre-Coated ELISA (Enzyme-Linked Immunosorbent Assay) kit is a solid phase immunoassay specially designed to measure Human FGF2 with a 96-well strip plate that is pre-coated with antibody specific for FGF2. The detection antibody is a biotinylated antibody specific for FGF2. The capture antibody is a monoclonal antibody from mouse, the detection antibody is polyclonal antibody from goat. The kit contains recombinant Human FGF2 with immunogen: Expression system for standard: E.coli; Immunogen sequence: P143 S288. The kit is analytically validated with ready to use reagents.

To measure Human FGF2, addstandards andsampletothewells, then add the biotinylateddetectionantibody. Washthe wellswithPBSor TBS buffer, and add Avidin-Biotin-Peroxidase Complex (ABC-HRP). Wash away the unbounded ABC-HRP with PBS or TBS buffer and add TMB. TMB is substrate to HRP and will be catalyzed to produce a blue color product, which changes into yellow after adding acidic stop solution. The density of the yellow product is linearly proportional to Human FGF2in the sample. Read the density of the yellow product in each well using a plate reader andbenchmarkthe samplewells'readingagainst thestandardcurve todetermine the concentrationofHuman FGF2 in the sample.

Overview

Product Name	Human FGF2 ELISA Kit
Reactive Species	Human
Size	96wells/kit, with removable strips.
Description	Sandwich High Sensitivity ELISA kit for Quantitative Detection of human soluble FGF2. 96wells/kit, with removablestrips.
Sensitivity	$<10 \mathrm{pg} / \mathrm{ml}$ *The sensitivity or the minimum detectable dose (MDD) is the lower limit of target protein that can be detected by the kit. It is determined by adding two standard deviations to the mean O.D. value of twenty (20) blank wells and calculating the corresponding concentration.
Detection Range	$62.5 \mathrm{pg} / \mathrm{ml}-4000 \mathrm{pg} / \mathrm{ml}$
Storage Instructions	Store at $4^{\circ} \mathrm{C}$ for 6 months, at $-20^{\circ} \mathrm{C}$ for 12 months. Avoid multiple freeze-thaw cycles (Shipped with wet ice.)
Uniprot ID	P09038

OriGene Technologies Inc.
9620 Medical Center Drive, Suite 200, Rockville, MD 20850
Phone: 1.888.267.4436 Fax: 301-340-9254
Email: techsupport@origene.com Web: www.origene.com

Technical Details

Capture/Detection Antibodies	The capture antibody is a monoclonal antibody from mouse, the detection antibody is polyclonal antibody from goat.
Specificity	Natural and recombinant Human FGF2
Immunogen	Expression system for standard: E.coli; Immunogen sequence: P143 - S288
Cross Reactivity	There is no detectable cross-reactivity with other relevant proteins.

Notice Before Application

Please read the following instructions before starting the experiment.

1. To inspect the validity of experiment operation and the appropriateness of sample dilution proportion, pilot experiment using standards and a small number of samples is recommended.
2. Before using the Kit, spin tubes and bring down all components to the bottom of tubes.
3. Don't let 96-well plate dry, for dry plate will inactivate active components on plate.
4. Don't reuse tips and tubes to avoid cross contamination.
5. Avoid using the reagents from different batches together.

Kit Components/Materials Provided

Description	Quantity	Volume	Storage of opened/reconstituted material
Anti-Human FGF2 Pre-coated 96-well strip microplate	1	12 strips of 8 wells	Return unused well to the foil pouch. Reseal along the entire edge of the zip-seal. May be stored for up to 1 month at $4^{\circ} \mathrm{C}$ provided this is within the expiration date of the kit.
Human FGF2 Standard	2	10 ng/tube	Discard the stock solution after 12 hours at $4^{\circ} \mathrm{C}$. May be stored at $20^{\circ} \mathrm{C}$ for 48 hours.
Human FGF2 Biotinylated antibody (100x)	1	$100 \mu \mathrm{l}$	May be stored for up to 1 month at
Avidin-Biotin-Peroxidase Complex (100x)	1	$100 \mu \mathrm{l}$	
Sample Diluent	1	30 ml	
Antibody Diluent	1	12mI	
Avidin-Biotin-Peroxidase Diluent	1	12mI	
Color Developing Reagent (TMB)	1	10mI	
Stop Solution	1	10mI	
Wash Buffer (25x)	1	20 ml	
Plate Sealers	4	Piece	

OriGene Technologies Inc.
9620 Medical Center Drive, Suite 200, Rockville, MD 20850
Phone: 1.888.267.4436
Fax: 301-340-9254
Email: techsupport@origene.com Web: www.origene.com
Required Materials That Are Not Supplied
Microplate Readercapable of reading absorbance at 450nm.
Automated plate washer (optional)
Pipettes and pipette tips capable of precisely dispensing $0.5 \mu \mathrm{l}$
through 1 ml volumes of aqueous solutions. Multichannel
pipettes are recommended for large amounts of samples.
Deionized ordistilled water.
500m/ graduated cylinders.
Test tubes for dilution.

Human soluble FGF2 ELISA Kit (EA102180) Standard Curve Example

Highest O.D. value might be higherorlowerthan in the example. The experiment result is statistically significant ifthe highest O.D. value is no less than 1.0.

Concentration $(p g / m l)$	0	62.5	125	250	500	1000	2000	4000
$O . D$	0.053	0.122	0.171	0.297	0.525	0.960	1.489	2.089

Human FGF2 ELISA Kit standard curve

A standard curve is provided for demonstration only. A standard curve should be generated for each set of samples assayed.

Intra/Inter Assay Variability

OriGene spend great efforts in documenting lot to lot variability and make sure ourassay kits produce robust data that are reproducible.
Intra-Assay Precision (Precision within an assay): Three samples of known concentration were tested on one plate to assess intra-assay precision. Inter-Assay Precision (Precision across assays): Three samples of known concentration were tested in separate assays to assess inter-assay precision.

Intra-Assay Precision
Inter-Assay Precision

Sample	1	2	3
n	16	16	16
Mean(pg/ml)	150	752	1076
Standarddeviation	10.95	54.89	79.62
CV(\%)	7.3	7.3	7.4

1	2	3
24	24	24
135	781	1071
10.8	62.48	92.1
8	8	8.6

Reproducibility

To assay reproducibility, three samples with different target protein concentrations were assayed using four different lots. Number of samples for each test $n=16$.

Lots	Lot 1(pg/ml	Lot2 $(\mathrm{pg} / \mathrm{ml})$	Lot3 $(\mathrm{pg} / \mathrm{ml})$	Lot4 $(\mathrm{pg} / \mathrm{ml})$	Mean $(\mathrm{pg} / \mathrm{ml})$	Standard Deviations	CV (\%)
Sample1	150	132	141	131	138	7.69	5.5%
Sample2	752	631	642	667	675	45.37	6.7%
Sample3	1076	1179	105	1199	1127	62.59	5.5%

Preparation Before The Experiment

Item	Preparation
All reagents	Bring all reagents to room temperature $\left(18-25^{\circ} \mathrm{C}\right)$ prior to use. The assay can also be done at room temperature however we recommend doing it at $37^{\circ} \mathrm{C}$ for best consistency with our QC results. Also the TMB incubation time estimate $(15-25 \mathrm{~min})$ is based on $37^{\circ} \mathrm{C}$. Please do not equilibrate ununsed plate well strips to room temperature. They should be sealed and stored in the original packaging.
Wash buffer	Prepare 500 ml of working Wash Buffer by diluting the supplied 20 ml of Wash Buffer (25x) with 480 ml of deionized or distilled water. If crystals have formed in the concentrate, warm to room temperature and mix it gently until crystals have completely dissolved.
Biotinylated Anti-human FGF2 antibody	It is recommended to prepare this reagent immediately prior to use by diluting the human FGF2 Biotinylated antibody (100x)1:100 with Antibody Diluent. Prepare 100μ lbyadding 1μ lofbiotinylated antibody (100x) to 99μ lof Antibody Diluent foreach well. Mix gently and thoroughly and use within 2 hours of generation.
Avidin-Biotin-Peroxidase Complex	It is recommended to prepare this reagentimmediately prior to use by diluting the Avidin-BiotinPeroxidase Complex (100x) 1:100 with Avidin-Biotin-Peroxidase Diluent. Prepare $100 \mu \mathrm{l}$ by adding $1 \mu \mathrm{l}$ of Avidin-Biotin-Peroxidase Complex (100x) to 99μ I of Avidin-Biotin-Peroxidase Diluent for each well. Mix gently and thoroughly and use within 2 hours of generation.
Human FGF2 Standard	It is recommended that the standards be prepared no more than 2 hours prior to performing the experiment. Use one 10 ng oflyophilized Human FGF2 standard for each experiment. Gently spin the vial priorto use. Reconstitute the standard to a stock concentration of $10 \mathrm{ng} / \mathrm{m} /$ using 1 ml of sample diluent. Allowthestandardtositforaminimum of 10 minutes withgentleagitation priortomaking dilutions.
Microplate	The included microplate is coated with capture antibodies and ready-to-use. It does not require additional washing orblocking. The unused well strips should be sealed and stored in the original packaging.
Sample	Dilute the samples so that the expected range of concentrations fall within the detection range of this kit. If the expected range is not known, a pilot test should be conducted to decide the optimal dilution ratio for your samples. Internal QC testing used dilution ratio of 1:1; concentration in serum around $150 \mathrm{pg} / \mathrm{ml}$

Dilution of Human FGF2 Standard

1. Numbertubes 1-8. Final Concentrations to be Tube \# 1-4000 pg/ml, \#2-2000 pg/ml, \#3-1000 pg/ml, \#4-500 pg/ml, \#5-250 pg/ml, \#6-125 pg/ml, \#7-62.5 pg/ml, \#8-0.0 pg/ml (Blank - Sample Diluent serves as the blank).
2. To generate standard \#1, add 400μ l of the reconstituted standard stock solution of $10 \mathrm{ng} / \mathrm{ml}$ and $600 \mu \mathrm{l}$ of sample diluent to tube \# 1 for a final volume of $1000 \mu \mathrm{l}$. Mix thoroughly.
3. Add 300μ l of sample diluent to tubes \# 2-7.
4. To generate standard \#2, add 300μ l of standard \# 1 from tube \# 1 to tube \#2 for a final volume of $600 \mu \mathrm{l}$. Mix thoroughly.
5. To generate standard \#3, add 300μ l of standard \#2 from tube \#2 to tube \#3 for a final volume of $600 \mu \mathrm{l}$. Mix thoroughly.
6. Continue the serial dilution for tube \#4-7.
7. Tube \#8 is a blank standard to be used with every experiment.

Sample Preparation andStorage

These sample collection instructions and storage conditions are intended as a general guideline and the sample stability has not been evaluated.

Sample Type	Procedure
Cell culture supernatants	Clearsample ofparticulates by centrifugation, assayimmediatelyorstore samples at-20 ${ }^{\circ} \mathrm{C}$.
Serum	Useaserum separatortube (SST) andallowserum to clotatroomtemperatureforaboutfour hours. Then, centrifugefor 15 min atapproximately $1,000 \times g$. assay immediately orstore samples at $-20^{\circ} \mathrm{C}$.
Plasma	Collect plasma using heparin or EDTA as an anticoagulant. Centrifuge for 15 min at approximately 1,000 x g. Assay immediately orstore samples at $-20^{\circ} \mathrm{C}$. *Note: it is important to not use anticoagulants otherthan the ones described above to treat plasma for other anticoagulants could block the antibody binding site.

Sample Collection Notes

1. Is is recommend that samples are immediately used upon preparation
2. Avoid repeated freeze/thaw cycles for all samples.
3. In the event that a sample type not listed above is intended to be used with the kit, it is recommended that the customer conduct validation experiments in order to be confident in the results.
4. Due to chemical interference, the use of tissue or cell extraction samples prepared by chemical lysis buffers may result in inaccurate results.
5. Due to factors including cell viability, cell number or sampling time, samples from cell culture supernatant may to be detected by the kit.
6. Samples should be brought to room temperature ($18-25^{\circ} \mathrm{C}$) before performing the assay without the use of extra heating. 7. Sample concentrations should be predicted before being used in the assay. If the samples concentration is not within the range of the standard curve, users must determine the optimal sample dilutions for their particular experiments.

Sample Dilution

The target protein concentration should be estimated and appropriate sample dilutions should be selected such that the final protein concentration lies near the middle of the linear dynamic range of the assay.

It is recommended to prepare 150μ I of sample for each replicate to be assayed. The samples should be diluted with sample diluent and mixed gently.

OriGene Technologies Inc.

Assay protocol

It is recommended that all reagents and materials be equilibrated to $37^{\circ} \mathrm{C} /$ room temperature prior to the experiment (see Preparation Before The Experiment if you have missed this information).

1. Prepare all reagents and working standards as directed previously.
2. Remove excess microplate strips from the plate frame and seal and store them in the original packaging.
3. Add 100μ l of the standard, samples, or control per well. Add 100μ l of the sample diluent buffer into the control well (Zero well). At least two replicates of each standard, sample, or control is recommended.
4. Cover with the plate sealer provided and incubate for 120 minutes at $R T$ (or 90 min . at $37^{\circ} \mathrm{C}$).
5. Remove the cover and discard the liquid in the wells into an appropriate waste receptacle. Invert the plate on the benchtop onto a paper towel and tap the plate to gently blot any remaining liquid. It is recommended that the wells are not allowed to completely dry at any time.
6. Add 100μ I of the prepared 1x Biotinylated Anti-human FGF2 antibody to each well.
7. Cover with plate sealer and incubate for 90 minutes at $R T$ (or 60 minutes at $37^{\circ} \mathrm{C}$).
8. Wash the plate 3 times with the $1 x$ wash buffer.
a. Discard the liquid in the wells into an appropriate waste receptacle. Then, invert the plate on the benchtop onto a paper towel and tap the plate to gently blot any remaining liquid. It is recommended that the wells are not allowed to completely dry at any time.
b. Add 300μ l of the $1 x$ wash buffer to each assay well. (For cleaner background incubate for 60 seconds between each wash).
c. Repeat steps $a-b 2$ additional times.
9. Add 100μ l of the prepared $1 x$ Avidin-Biotin-Peroxidase Complex into each well. Cover with the plate sealer provided and incubate for 40 minutes at $R T$ (or 30 minutes at $37^{\circ} \mathrm{C}$).
10. Wash the plate 5 times with the $1 x$ wash buffer.
a. Discard the liquid in the wells into an appropriate waste receptacle. Then, invert the plate on the benchtop onto a paper towel and tap the plate to gently blot any remaining liquid. It is recommended that the wells are not allowed to completely dry at any time.
b. Add 300μ l of the $1 x$ wash buffer to each assay well. (For cleaner background incubate for 60 seconds between each wash).
c. Repeat steps a-b 4 additional times.
11. Add 90μ lofColorDeveloping Reagent to each well. Coverwith the platesealerprovided and incubate in the darkfor 30 minutes atRT(or $15-25$ minutes at $37^{\circ} \mathrm{C}$). (The optimal incubation time must be empirically determined. A guideline to look for is blue shading the top four standard wells, while the remaining standards remain clear.)
12. Add 100μ l of Stop Solution to each well. The color should immediately change to yellow.
13. Within 30 minutes of stopping the reaction, the O.D. absorbance should be read with a microplate reader at 450nm.

Assay Protocol Notes

1. Solutions: To avoid cross-contamination, change pipette tips between additions of each standard, between sample additions, and between reagent additions. Also, use separate reservoirs for each reagent.
2. Applying Solutions: All solutions should be added to the bottom of the ELISA plate well. Avoid touching the inside wall of the well. Avoid foaming when possible.
3. Assay Timing: The interval between adding samples to the first and last wells should be minimized. Delays will increase the incubation time differential between wells, which will significantly affect the experimental accuracy and repeatability. For each step in the procedure, total dispensing time for addition of reagents or samples should not exceed 10 minutes.
4. Incubation: To prevent evaporation and ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary. Do not allow wells to sit uncovered for extended periods of time between incubation steps. Do not let wells dry out at any time during the assay. Strictly observe the recommended incubation times and temperatures.
5. Washing: Proper washing procedure is critical. Insufficient washing will result in poor precision and falsely elevated absorbance readings. Residual liquid in the reaction wells should be patted dry against absorbent paper during the washing process. Do not put absorbent paper directly into the reaction wells.
6. Controlling Substrate Reaction Time: After the addition of the TMB Substrate, periodically monitor the color development. Stop color development before the color becomes too deep by adding Stop Solution. The excessively strong color will result in inaccurate absorbance readings.
7. Reading: The microplate reader should be preheated and programmed prior to use. Prior to taking OD readings, remove any residual liquid or fingerprints from the underside of the plate and confirm that there are no bubbles in the wells.

OriGene Technologies Inc.
9620 Medical Center Drive, Suite 200, Rockville, MD 20850
8. Reaction Time Control: Control reaction time should be strictly followed as outlined.
9. Stop Solution: The Stop Solution contains an acid, therefore proper precautions should be taken during its use, such as protection of the eyes, hands, face, and clothing.
10. To minimize the external influence on the assay performance, operational procedures and lab conditions (such as room temperature, humidity, incubator temperature) should be strictly controlled. It is also strongly suggested that the whole assay is performed by the same operator from the beginning to the end.

Data Analysis

Average the duplicate readings for each standard, sample, and control. Subtract the average zero standard O.D. reading.

It is recommended that a standard curve be created using computer software to generate a four parameter logistic (4-PL) curve-fit. A free program capable of generating a four parameter logistic (4-PL) curve-fit can be found online at: www.myassays.com/four-parameter-logistic- curve.assay.

Alternatively, plot the mean absorbance for each standard against the concentration. The measured concentration in the sample can be interpolated by using linearregression of each average relative OD against the standard curve generated using curve fitting software. This will generate an adequate but less precise fit of the data.

For diluted samples, the concentration reading from the standard curve must be multiplied by the dilution factor.

Background on FGF2

FGF2 has been implicated in a multitude of physiologic and pathologic processes, including limb development, angiogenesis, wound healing, and tumor growth. Human FGF2 shares 96% and 97% amino acid sequence homology with mouse and rat respectively. FGF2 belongs to the fibroblast growth factor (FGF) family. Fibroblast growth factors (FGFs) exhibit widespread mitogenic and neurotrophic activities. Nine members of the family are currently known, and FGF-1 and FGF-2 are present in relatively high levels in CNS. FGF-2 is expressed by at low levels in many tissues and cell types and reaches high concentrations in brain and pituitary.

