OriGene

Human IL-29 ELISA Kit

Instructions for use

Catalogue numbers: 1×48 tests: EA101860
1x96 tests: EA101861
2x96 tests: EA101862

For research use only

Fast Track Your Research..............

Table of Contents

1. Intended use 2
2. Introduction 2
2.1. Summary 2
2.2. Principle of the method 2
3. Reagents provided and reconstitution 3
4. Materials required but not provided 3
5. Storage Instructions 3
6. Specimen collection, processing \& storage 4
7. Safety \& precautions for use 5
8. Assay Preparation 6
8.1. Assay Design 6
8.2. Preparation of Wash Buffer 6
8.3. Preparation of Standard 6
8.4. Preparation of Samples 7
8.5. Preparation of Biotinylated Anti IL-29 7
8.6. Preparation of Streptavidin-HRP 7
9. Method 8
10. Data Analysis 9
11. Assay limitations 9
12. Performance Characteristics 10
12.1. Sensitivity 10
12.2. Specificity 10
12.3. Precision 10
12.4. Dilution Parallelism 11
12.5. Spike Recovery 11
12.6. Stability 11
12.7. Expected Serum Values 11
12.8. Standard Calibration 11
13. Bibliography 12
14. Assay Summary 13

Human IL-29 ELISA KIT

1. Intended use

The OriGenehuman IL-29 ELISA kit is a solid phase sandwich ELISA for thein-vitroqualitative and quantitative determination of IL-29 in cell culture supernatants, buffered solutions or human serum, plasma, or other body fluids. This assay will recognize both natural and recombinant human IL-29.

This kit has been configured for research use only.

2. Introduction

2.1. Summary

IL-29, also termed IFN $\lambda 1$, was discovered in 2003.It belongs to the type III subset of IFN family with IL-28A and IL-28B, respectively IFN $\lambda 2$ and IFN $\lambda 3$. The IFN λ genes are clustered together on human chromosome 19 and this cytokine is composed of multiple exons, resembling the structural organization of genes encoding IL-10-related cytokines. It encodes 20 kDa secreted monomeric protein. The IFN λ proteins binds and signals through a receptor composed of the unique IFN21 chain (also known as IL-28RA) and the shared IL-10R β chain which is also a part of the receptor for IL-10, IL-22. IFN type I receptors are largely restricted to cells of epithelial origin. They activate the same intracellular signaling pathway and many of the same biological activities, including antiviral and antitumor activity, in a wide variety of target cells, like the type I IFNs (α and β).

IL-29 plays a role in the antiviral defence, predominantly in the epithelial tissues. It has been described as a therapeutic agent to treat patients with chronic hepatitis C virus by inhibiting B and C hepatitis virus replication.
It could be the main inhibitor to innate immunity and has demonstrated activity at the interface between innate and adaptive immunity. IFN入inhibits also the Th2 response and acts directly on CD4+ T-Cells and dendritic cells, effects are not accompanied by a complementary elevation of Th1.
Its use as a potential therapeutic agent for allergic asthma is under study and its anti-proliferative and antitumor activities make it a novel target for the treatment and control of some cancer.

2.2. Principle of the method

The IL-29 Kit is a solid phase sandwich Enzyme Linked-Immuno-Sorbent Assay (ELISA). A monoclonal antibody specific for IL-29 has been coated onto the wells of the microtiter strips provided. Samples, including standards of known IL-29concentrations and unknowns are pipetted into these wells.
During the first incubation, the IL-29 antigen and a biotinylated monoclonal antibody specific for IL-29 are simultaneously incubated.
After washing, the enzyme (streptavidin-peroxidase) is added. After incubation and washing to remove all the unbound enzyme, a substrate solution which is acting on the bound enzyme is added to induce a coloured reaction product. The intensity of this coloured product is directly proportional to the concentration of IL-29 present in the samples.

3. Reagents provided and reconstitution

Reagents (Store@2-8 ${ }^{\circ}$ C)	Quantity 1x48 well kit Cat no. EA101860	Quantity 1x96 well kit Cat no. EA101861	Quantity 2x96 well kit Cat no. EA101862	Reconstitution
96 well microtiter strip plate	$1 / 2$	1	2	Ready to use (Pre-coated)

4. Materials required but not provided

- Microtiter plate reader fitted with appropriate filters (450nm required with optional 630nm reference filter)
- Microplate washer or wash bottle
- $10,50,100,200$ and $1,000 \mu \mathrm{l}$ adjustable single channel micropipettes with disposable tips
- 50-300 1 l multi-channel micropipette with disposable tips
- Multichannel micropipette reagent reservoirs
- Distilled water
- Vortex mixer
- Miscellaneous laboratory plastic and/or glass, if possible sterile

5. Storage Instructions

Store kit reagents between 2 and $8^{\circ} \mathrm{C}$. Immediately after use remaining reagents should be returned to cold storage $\left(2-8^{\circ} \mathrm{C}\right)$. Expiry of the kit and reagents is stated on box front labels. The expiry of the kit components can only be guaranteed if the components are stored properly, and if, in case of repeated use of one component, the reagent is not contaminated by the first handling.

Wash Buffer: Once prepared store at $2-8^{\circ} \mathrm{C}$ for up to 1 week.
Standards: Once prepared use immediately and do not store.
Biotinylated Secondary Antibody: Once prepared use immediately and do not store.
Streptavidin-HRP: Once prepared use immediately and do not store.

6. Specimen collection, processing \& storage

Cell culture supernatants, serum, plasma or other biological samples will be suitable for use in the assay. Remove serum from the clot or red cells, respectively, as soon as possible after clotting and separation.

Cell culture supernatants: Remove particulates and aggregates by spinning at approximately $1000 \times \mathrm{g}$ for 10 min .

Serum: Use pyrogen/endotoxin free collecting tubes. Serum should be removed rapidly and carefully from the red cells after clotting. Following clotting, centrifuge at approximately 1000 xg for 10 min and remove serum.

Plasma: EDTA, citrate and heparin plasma can be assayed. Spin samples at 1000 xg for 30 min to remove
Storage: If not analysed shortly after collection, samples should be aliquoted ($250-500 \mu \mathrm{l}$) to avoid repeated freeze-thaw cycles and stored frozen at $-70^{\circ} \mathrm{C}$. Avoid multiple freeze-thaw cycles of frozen specimens.

Recommendation: Do not thaw by heating at $37^{\circ} \mathrm{C}$ or $56^{\circ} \mathrm{C}$. Thaw at room temperature and make sure that sample is completely thawed and homogeneous before use. When possible avoid use of badly haemolysed or lipemic sera. If large amounts of particles are present these should be removed prior to use by centrifugation or filtration.

7. Safety \& precautions for use

- Handling of reagents, serum or plasma specimens should be in accordance with local safety procedures, e.g.CDC/NIH Health manual : " Biosafety in Microbiological and Biomedical Laboratories" 1984
- Laboratory gloves should be worn at all times
- Avoid any skin contact with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and TMB. In case of contact, wash thoroughly with water
- Do not eat, drink, smoke or apply cosmetics where kit reagents are used
- Do not pipette by mouth
- When not in use, kit components should be stored refrigerated or frozen as indicated on vials or bottles labels
- All reagents should be warmed to room temperature before use. Lyophilized standards should be discarded after use
- Once the desired number of strips has been removed, immediately reseal the bag to protect the remaining strips from deterioration
- Cover or cap all reagents when not in use
- Do not mix or interchange reagents between different lots
- Do not use reagents beyond the expiration date of the kit
- Use a clean disposable plastic pipette tip for each reagent, standard, or specimen addition in order to avoid cross contamination, for the dispensing of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and substrate solution, avoid pipettes with metal parts
- Use a clean plastic container to prepare the washing solution
- Thoroughly mix the reagents and samples before use by agitation or swirling
- All residual washing liquid must be drained from the wells by efficient aspiration or by decantation followed by tapping the plate forcefully on absorbent paper. Never insert absorbent paper directly into the wells
- The TMB solution is light sensitive. Avoid prolonged exposure to light. Also, avoid contact of the TMB solution with metal to prevent colour development. Warning TMB is toxic avoid direct contact with hands. Dispose off properly
- If a dark blue colour develops within a few minutes after preparation, this indicates that the TMB solution has been contaminated and must be discarded. Read absorbance's within 1 hour after completion of the assay
- When pipetting reagents, maintain a consistent order of addition from well-to-well. This will ensure equal incubation times for all wells
- Follow incubation times described in the assay procedure
- Dispense the TMB solution within 15 min of the washing of the microtiter plate

8. Assay Preparation

Bring all reagents to room temperature before use

8.1. Assay Design

Determine the number of microwell strips required to test the desired number of samples plus appropriate number of wells needed for running zeros and standards. Each sample, standard and zero should be tested in duplicate. Remove sufficient microwell strips for testing from the pouch immediately prior to use. Return any wells not required for this assay with desiccant to the pouch. Seal tightly and return to $2-8^{\circ} \mathrm{C}$ storage.

Example plate layout(example shown for a 6 point standard curve)

	Standards		Sample Wells									
	1	2	3	4	5	6	7	8	9	10	11	12
A	250	250										
B	125	125										
C	62.50	62.50										
D	31.25	31.25										
E	15.6	15.6										
F	7.8	7.8										
G	Zero	Zero										
H												

8.2. Preparation of Wash Buffer

Dilute the (200x) wash buffer concentrate 200 fold with distilled water to give a $1 \times$ working solution.
Pour entire contents (10 ml) of the Washing Buffer Concentrate into a clean $2,000 \mathrm{ml}$ graduated cylinder. Bring final volume to $2,000 \mathrm{ml}$ with glass-distilled or deionized water. Mix gently to avoid foaming. Transfer to a clean wash bottle and store at $2^{\circ}-8^{\circ} \mathrm{C}$ for up to 1 week.

8.3. Preparation of Standard

Standard vials must be reconstituted with the volume of Standard Diluent shown on the vial immediately prior to use. This reconstitution gives a stock solution of $250 \mathrm{pg} / \mathrm{ml}$ of $\mathrm{IL}-29$. Mix the reconstituted standard gently by inversion only. Serial dilutions of the standard are made directly in the assay plate to provide the concentration range from 250 to $7.8 \mathrm{pg} / \mathrm{ml}$. A fresh standard curve should be produced for each new assay.

- Immediately after reconstitution add $200 \mu \mathrm{l}$ of the reconstituted standard to wells A1 and A2, which provides the highest concentration standard at $250 \mathrm{pg} / \mathrm{ml}$
- Add 100μ l of Standard Diluent to the remaining standard wells B1 and B2 to F1 and F2
- Transfer $100 \mu \mathrm{l}$ from wells A1 and A2 to B1 and B2. Mix the well contents by repeated aspirations and ejections taking care not to scratch the inner surface of the wells
- Continue this $1: 1$ dilution using $100 \mu \mathrm{l}$ from wells B1 and B2 through to wells F1 and F2 providing a serial diluted standard curve ranging from $250 \mathrm{pg} / \mathrm{ml}$ to $7.8 \mathrm{pg} / \mathrm{ml}$
- Discard $100 \mu \mathrm{l}$ from the final wells of the standard curve (F1 and F2)

Alternatively these dilutions can be performed in separate clean tubes and immediately transferred directly into the relevant wells.

8.4. Preparation of Samples

Before testing, human serum or plasma samples have to be diluted 1:2 in Buffer Standard Diluent.

8.5. Preparation of Biotinylated Anti IL-29

It is recommended this reagent is prepared immediately before use. Dilute the biotinylated anti-IL-29 with the biotinylated antibody diluent in an appropriate clean glass vial using volumes appropriate to the number of required wells. Please see example volumes below:

Number of wells required	Biotinylated Antibody $(\mu \mathrm{l})$	Biotinylated Antibody Diluent $(\mu \mathrm{l})$
16	40	1060
24	60	1590
32	80	2120
48	120	3180
96	240	6360

8.6. Preparation of Streptavidin-HRP

It is recommended to centrifuge vial for a few seconds in a microcentrifuge to collect all the volume at the bottom.

Dilute the $5 \mu \mathrm{l}$ vial with 0.5 ml of HRP diluent immediately before use. Do-not keep this diluted vial for future experiments. Further dilute the HRP solution to volumes appropriate for the number of required wells in a clean glass vial. Please see example volumes below:

Number of wells required	Streptavidin-HRP $(\mu \mathrm{l})$	Streptavidin-HRP Diluent (ml)
16	30	2
24	45	3
32	60	4
48	75	5
96	150	10

9. Method

We strongly recommend that every vial is mixed thoroughly without foaming prior to use except the standard vial which must be mixed gently by inversion only.

Prepare all reagents as shown in section 8.
Note: Final preparation of Biotinylated anti-IL-29 (section 8.5) and Streptavidin-HRP (section 8.6) should occur immediately before use.

	say Step	Details
1.	Addition	Prepare Standard curve as shown in section 8.3
2.	Addition	Add 100μ of each Standard, Diluted Sample and Zero in duplicate to appropriate number of wells
3.	Addition	Add $50 \mu \mathrm{l}$ of diluted Biotinylated anti-IL-29 to all wells
4.	Incubation	Cover with a plastic plate cover and incubate at room temperature (18 to $25^{\circ} \mathrm{C}$) for 2 hours
5.	Wash	Remove the cover and wash the plate as follows: a) Aspirate the liquid from each well b) Dispense 0.3 ml of $1 \mathbf{x}$ washing solution into each well c) Aspirate the contents of each well d) Repeat step b and c another two times
6.	Addition	Add 100μ l of Streptavidin-HRP solution into all wells
7.	Incubation	Cover with a plastic plate cover and incubate at room temperature (18 to $25^{\circ} \mathrm{C}$) for 30 min
8.	Wash	Repeat wash step 5.
9.	Addition	Add $100 \mu \mathrm{l}$ of ready-to-use TMB Substrate Solution into all wells
10.	Incubation	Incubate in the dark for 10-20 minutes* at room temperature. Avoid direct exposure to light by wrapping the plate in aluminium foil
11.	Addition	Add $100 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathbf{S O}_{4}$: Stop Reagent into all wells
Read the absorbance value of each well (immediately after step 11.) on a spectrophotometer using 450 nm as the primary wavelength and optionally 630 nm as the reference wave length (610 nm to 650 nm is acceptable).		

*Incubation time of the substrate solution is usually determined by the ELISA reader performance. Many ELISA readers only record absorbance up to 2.0 O.D. Therefore the colour development within individual microwells must be observed by the analyst, and the substrate reaction stopped before positive wells are no longer within recordable range

10. Data Analysis

Calculate the average absorbance values for each set of duplicate standards and samples. Ideally duplicates should be within 20% of the mean.

Generate a linear standard curve by plotting the average absorbance of each standard on the vertical axis versus the corresponding human IL-29 standard concentration on the horizontal axis.

The amount of IL-29 in each sample is determined by extrapolating OD values against IL-29 standard concentrations using the standard curve.

Example IL-29 Standard curve

Standard	IL-29 Conc (pg/mI)	OD (450nm) Mean	CV (\%)
1	250	1,823	1,6
2	125	0,899	0,9
3	62,5	0,477	1,5
4	31,25	0,265	4,5
5	15,6	0,169	4,6
6	7,8	0,108	3,3
Zero	0	0.060	4,7

Note: curve shown above should not be used to determine results. Every laboratory must run a standard curve for each set of microwell strips assayed.

For samples human serum or plasmas which have been diluted 1:2 according to the protocol, the calculated concentration should be multiplied by the dilution factor (x2).

11. Assay limitations

Do not extrapolate the standard curve beyond the maximum standard curve point. The dose-response is non-linear in this region and good accuracy is difficult to obtain. Concentrated samples above the maximum standard concentration must be diluted with Standard diluent or with your own sample buffer to produce an OD value within the range of the standard curve. Following analysis of such samples always multiply results by the appropriate dilution factor to produce actual final concentration.

The influence of various drugs on end results has not been investigated. Bacterial or fungal contamination and laboratory cross-contamination may also cause irregular results.

Improper or insufficient washing at any stage of the procedure will result in either false positive or false negative results. Completely empty wells before dispensing fresh Washing Buffer, fill with Washing Buffer as indicated for each wash cycle and do not allow wells to sit uncovered or dry for extended periods.

Disposable pipette tips, flasks or glassware are preferred, reusable glassware must be washed and thoroughly rinsed of all detergents before use.

As with most biological assays conditions may vary from assay to assay therefore afresh standard curve must be prepared and run for every assay.

12. Performance Characteristics

12.1. Sensitivity

The minimum detectable dose of IL-29 was determined to be $5.9 \mathrm{pg} / \mathrm{ml}$. This was determined by adding 2 standard deviations to the mean OD obtained when the zero standard was assayed 36 times (in 6 different experiments).

12.2. Specificity

The assay recognizes natural and recombinant human IL-29. To define specificity of this ELISA, several proteins were tested for cross reactivity. There was no cross reactivity observed for any protein tested (IFN 22 , IL28A, IL28B, IFN γ, IL-10, IL-24, IP-10, IL-31, IL-34 and GM-CSF).

12.3. Precision

Intra-Assay

Reproducibility within the assay was evaluated in three independent experiments. Each assay was carried out with 6 replicates (3 duplicates) in 2 human pooled serum, 2 in culture media and 2 in standard diluent with samples containing different concentrations of IL-29. The overall intra-assay coefficient of variation has been calculated to be 5.0%.

Session	Sample	Mean IL-29 pg/ml	SD	CV\%
Session 1	Sample 1	107.9	9.10	$\mathbf{8 . 4}$
	Sample 2	66.71	1.68	$\mathbf{2 . 5}$
	Sample 3	214.45	15.6	$\mathbf{6 . 8}$
	Sample 4	72.08	5.41	$\mathbf{7 . 5}$
	Sample 5	209.63	12.95	$\mathbf{6 . 2}$
	Sample 6	53.73	3.3	$\mathbf{6 . 1}$
Session 2	Sample 1	99.35	6.24	$\mathbf{6 . 3}$
	Sample 2	61.10	2.06	$\mathbf{3 . 4}$
	Sample 3	234.63	10.30	$\mathbf{4 . 4}$
	Sample 4	76.44	5.28	$\mathbf{6 . 9}$
	Sample 5	216.50	2.51	$\mathbf{1 . 2}$
	Sample 6	64.51	1.99	$\mathbf{3 . 1}$
	Sample 1	76.28	4.21	$\mathbf{5 . 5}$
	Sample 2	47.40	2.23	4.7
	Sample 3	215.36	16.48	$\mathbf{7 . 7}$
	Sample 4	70.89	2.61	$\mathbf{3 . 7}$
	Sample 5	215.22	0.87	$\mathbf{0 . 4}$
	Sample 6	68.27	3.93	$\mathbf{5 . 8}$

Inter-Assay

Assay to assay reproducibility within one laboratory was evaluated in three independent experiments. Each assay was carried out with 6 replicates (3 duplicates) in 2 human pooled serum, 2 in culture media and 2 in standard diluent with samples containing different concentrations of IL-29.The calculated overall coefficient of variation was 9.9%.

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Mean IL-29 pg/mI	94.49	58.40	221.48	73.13	213.79	61.41
SD	15.33	8.78	15.66	4.73	7.33	7.02
CV\%	$\mathbf{1 6 . 2}$	$\mathbf{1 5 . 0}$	$\mathbf{7 . 1}$	$\mathbf{6 . 5}$	$\mathbf{3 . 4}$	$\mathbf{1 1 . 4}$

12.4. Dilution Parallelism

Two spiked human serum and one spiked culture media with different levels of IL-29 were analysed at three serial two fold dilutions (1:2-1:32) with two replicates each. Recoveries ranged from 87% to 123% with an overall mean recovery of $\mathbf{1 0 6 \%}$.

12.5. Spike Recovery

The spike recovery was evaluated by spiking two concentrations of IL-29 in human serum and culture media in three experiments. Recoveries ranged from 83% to 136% with an overall mean recovery of 110\%.

12.6. Stability

Storage Stability

Aliquots of spiked serum or culture media samples were stored at $-20^{\circ} \mathrm{C}, 2-8^{\circ} \mathrm{C}$, room temperature (RT) and at $37^{\circ} \mathrm{C}$ and the IL-29 level determined after 24h.
For culture media samples, we observed no significant loss when stored at $4^{\circ} \mathrm{C}$ and RT but a loss of 20% when stored at $+37^{\circ} \mathrm{C}$.
For spiked serum, we observed a significant loss of 40% after storage at $+4^{\circ} \mathrm{C}$ and 60% after storage at RT and $37^{\circ} \mathrm{C}$.
As a consequence, samples should be stored at $-20^{\circ} \mathrm{C}$.

Freeze-thaw Stability

Aliquots of spiked serum or culture media were stored frozen at $-20^{\circ} \mathrm{C}$ and thawed up to 5 times and IL-29 level was determined.
For culture media, there was no loss of IL-29 reactivity during storage.
For spiked serum, we observed a significant loss of 40% after 3 and 5 freeze-thaw cycles.
As a consequence, samples should be stored at $-20^{\circ} \mathrm{C}$ and thawed once.

12.7. ExpectedValues

A panel of 10 sera and 10 plasmas of apparently healthy blood donors was tested for IL-29.

Sample Matrix	Number of samples evaluated	Range $(\mathrm{pg} / \mathrm{ml})$	\% Detectable	Mean of Detectable $(\mathrm{pg} / \mathrm{ml})$
Serum	10	$\mathrm{nd}^{\star}-54.1 \mathrm{pg} / \mathrm{ml}$	40	37.2
Plasma (Heparin)	10	$\mathrm{nd}^{\star}-49.2 \mathrm{pg} / \mathrm{ml}$	60	20.7

*nd = non detectable, samples measured below the lowest standard point.

12.8. Standard Calibration

This immunoassay is calibrated against the International Reference Standard NIBSC 10/176. NIBSC IL-29 is quantitated in International Units (IU): 1 IU corresponding to 0.1 ng OriGeneIL-29.

13. Bibliography

Interferon-Lambda: A New Addition to an old family, Donnelly and Kotenko Journal of Interferon \& Cytokine Research; Volume 30, Number 8, 2010

IL-28 and IL-29: Newcomers to the Interferon family, Uzé and Monneron; Biochimie 89 (2007) 729-734.
Regulation of interferon lambda-1 (IFNL1/IFN-11/IL-29) expression in human colon epithelial cells. Swider A, et al. Cytokine, 2014 Jan. PMID 24140069

IL-29 is produced by $T(H) 17$ cells and mediates the cutaneous antiviral competence in psoriasis. Wolk K, et al. Sci Transl Med, 2013 Sep 25. PMID 24068736

IL-28, IL-29 and their class II cytokine receptor IL-28R. Paul Shepard, Nature Immunology Dec 2002
Interferon-lambda (IFN- λ) induces signal transduction and gene expression in human hepatocytes, but not in lymphocytes or monocytes. Dickensheets H, et al. J Leukoc Biol, 2013 Mar. PMID 23258595

Effect of non-surgical periodontal therapy on interleukin-29 levels in gingival crevicular fluid of chronic periodontitis and aggressive periodontitis patients. Shivaprasad BM, et al. Dis Markers, 2013. PMID 23151616

MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-ג1. Li Y, et al. Protein Cell, 2013 Feb. PMID 23150165

Interferon-lambda in the context of viral infections : Production, Response and Therapeutic Implications. Pascale Hermant, Journal of innate immunity 2014

Interferons and systemic sclerosis : correlation between interferon gamma and interferon-lambda1. Dantas AT, Autoimmunity, 2015 Jun 9

Prognosis Relevance of Serum Cytokines in Pancreatic Cancer. Torres C, Biomed Res Int. 2015
Clinical significance of IL-29, IL-32 and TNFa levels in patients with gastric cancer. Erturk K, Tumor Biol., 2015 July 29

The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections. Egli A., Emerging Microbes and infections 2014

Role of IFN-lambda in Allergic Asthma. Koch S.J.Innate Immunol., 2015

14. Assay Summary

Total procedure length : 2h45mn

Add $\mathbf{1 0 0} \boldsymbol{\mu}$ l standard and diluted sample and $\mathbf{5 0} \boldsymbol{\mu}$ I Biotinylated anti-IL-29
\downarrow
Incubate $\mathbf{2}$ hours at room temperature

Wash three times
\downarrow
Add $\mathbf{1 0 0 \mu}$ I of Streptavidin-HRP
\downarrow

Incubate 30min at room temperature
\downarrow
Wash three times
\downarrow
Add 100μ of ready-to-use TMB
Protect from light. Let the colour develop for 10-20 min.
\downarrow
Add $\mathbf{1 0 0 \mu I}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$
\downarrow
Read Absorbance at 450 nm

TECHNICAL CONSULTATION

OriGene Technologies, Inc. 9620 Medical Center Dr., Suite 200 Rockville, MD 20850

Phone: 1.888.267.4436
Fax: 301-340-9254
Email: techsupport@OriGene.com
Web: www.OriGene.com

For Research Use Only
Not for use in diagnostic procedures

